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ON LINEARLY INDEPENDENT SOLUTIONS
OF THE HOMOGENEOUS SCHWARZ PROBLEM

V. G. Nikolaev UDC 517.952

Abstract. We study the homogeneous Schwarz problem for Douglis analytic functions. We consider

two-dimensional matrices J with a multiple eigenvalue and a eigenvector, which is not proportional to

a real vector. We obtain a sufficient condition for the matrix J under which there exist two linearly

independent solutions of the problem defined in a certain domain D. We present an example.
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1. Basic definitions and statement of the problem. Assume that a matrix J ∈ C
n×n has no

real eigenvalues. Let ω = ω(z) ∈ C1(D) be an n-vector-valued function, where D ⊂ R
2 is a domain.

Let us consider the following homogeneous elliptic system of first-order partial differential equations
in D (see [3, 6, 7]):

∂ω

∂y
− J

∂ω

∂x
= 0, z ∈ D. (1)

Definition 1 (see [2, 3, 5–7]). A function ω(z) considered as a solution of (1) is called a Douglis
analytical function or a J-analytical function. We say that the function ω(z) corresponds to the
matrix J .

A proof of the fact that the system (1) is elliptic can be found in [5]. Examples of J-analytical

functions are vector polynomials of the form

ω(z) =
m∑

k=0

(xE + yJ)k · ck, ck ∈ C
n,

where E is the identity matrix.

Let us consider the following homogeneous Schwarz problem for the system (1) (see [2, 3, 6, 7]).
Let a simply connected domain D ⊂ R

2 be bounded by a smooth contour Γ. Find a J-analytical
function ω(z) ∈ C(D) with the matrix J satisfying the the boundary condition

Reω(z)
∣∣
Γ
= 0. (2)

The obvious solutions of the problem (2) are constant vectors ω ≡ ic, where c ∈ Rn, which are

called trivial (constant) solutions. As is known (see [4]), only constants are solutions of the problem
(2) for n = 1. However, this is invalid in general for n > 1. We present an example for n = 2. Let

J =

(
4i 9
1 −2i

)
, ω(z) =

(
2x2 + 4y2 − 1− 2i xy

−i(x2 + y2)

)
. (3)

In (3), the matrix J has the eigenvalue λ = i of multiplicity 2. The function ω(z) corresponds to the
matrix J according to Definition 1. Here Reω(z)

∣∣
Γ
= 0 on the ellipse Γ : 2x2 + 4y2 = 1.
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Before constructing nonconstant solutions of the problem (2) for n = 2 in domains other than

ellipses, we reduce it to an equivalent scalar form.

2. Scalar form of the homogeneous Schwarz problem for n = 2 and λ = i. Assume that a
matrix J ∈ C

2×2 has a multiple eigenvalue λ = i. We denote by J1 and Q, respectively, the Jordan

form and Jordan basis of the matrix J :

J1 =

(
i 0
1 i

)
, Q = (x,y), J = QJ1Q

−1. (4)

Moreover, we assume that the eigenvector y is not proportional to a real vector. We decompose the
complex conjugate vector y with respect to the Jordan basis x,y of the matrix J :

y = l1x+ l2y, l1, l2 ∈ C, l1 = l1(J) =
det(y,y)

det(x,y)
, l2 = l2(J) =

det(x,y)

det(x,y)
. (5)

In (5), we find the numbers l1 and l2 by the Cramer formulas. Below we need only the number l1. Let
us prove the following property.

Proposition 1. The absolute value |l1| of the number l1 in (5) is independent of the choice of the
Jordan basis Q of the matrix J .

Proof. Since the matrix J has a unique eigenvector y, any other its Jordan basis Q1 can be written
as follows:

Q1 = (cx+ by, ay), a, b, c ∈ C, a, c �= 0.

It is easy to show that c = a, i.e.,

Q1 = (x1,y1) = (ax+ by, ay), a, b ∈ C, a �= 0.

Assume that the number l∗1 was found by the formula (5), where instead of the basis Q we take the
basis Q1. Then, taking into account the properties of the determinant, we have

l∗1 =
det(y1,y1)

det(x1,y1)
=

det(ay, ay)

det(ax+ by, ay)
=

det(ay, ay)

det(ax, ay)
=

a a

a2
· det(y,y)
det(x,y)

=
|a|2
a2

· l1, a �= 0. (6)

Therefore, |l∗1| = |l1|. �

Remark 1. It follows from (6) that the numbers l1 and l∗1 themselves depend on the choice of the
Jordan basis. They will be different if a /∈ R.

Let us consider a new basis Q′ = (y,y) of the operator J . Since Jx = ix + y, Jy = iy, by virtue
of (4), taking into account (5), we obtain

Jy = J(l1x+ l2y) = il1x+ l1y + il2y = i(l1x+ l2y) + l1y = iy + l1y. (7)

Thus, the matrix J ′
1 = (Q′)−1JQ′ of the operator J in the new basis Q′ = (y,y) has the following

form:

J ′
1 =

(
i 0
l1 i

)
. (8)

Substituting J = Q′J ′
1(Q

′)−1 in (1) and multiplying both sides of the resulting equation by the
matrix (Q′)−1 from the left, we obtain the following relation:

∂

∂y

(
f

g

)
−

(
i 0

l1 i

)
· ∂

∂x

(
f

g

)
= 0, (f, g)T = (Q′)−1ω, Q′ = (y,y). (9)
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We introduce the complex variable ζ = x + iy, ζ = x − iy. We take into account the following fact:

if a function f(ζ) is holomorphic in a domain D, then
∂f

∂x
=

df

dζ
, ζ ∈ D. Assume that f(ζ) = u+ iv.

The following equalities follow from (9):

g(x, y) = l1 · y ∂f

∂x
+ F1 = l1 ·

(
ζ − ζ

2i

)
∂f

∂x
+ F1 =

il1
2

· ζ ∂f

∂x
+ F = l · ζ df

dζ
+ F = p+ iq, (10)

where

F =
l1
2i

ζ
df

dζ
+ F1, l =

il1
2
,

f = f(ζ), F1 = F1(ζ), F = F (ζ) are arbitrary holomorphic functions in D. In (10), u, v, p, and q

denote the real-valued functions of the variables x and y.
Let a function ω = ω(ζ) be a solution of the homogeneous Schwarz problem (2) defined in a certain

domain D. Let y = (a1, a2) = (a + bi, c + di), where a, b, c, d ∈ R. Then taking into account (9), we
represent the function ω(ζ) in the form

ω(ζ) = Q′ · (f, g)T = (y,y) · (f, g)T =

(
a1 a1
a2 a2

)
·
(
u+ iv
p+ iq

)
. (11)

The boundary condition (2), i.e., the equality Reω(ζ)
∣∣
Γ
= 0, takes the following form in the notation

of (11): {
Re

[
a1(u+ iv) + a1(p+ iq)

]∣∣
Γ
= 0,

Re
[
a2(u+ iv) + a2(p+ iq)

]∣∣
Γ
= 0.

(12)

We consider (12) as an inhomogeneous algebraic system with respect to the variables u and v. Since, by
the assumption, the eigenvector y of the matrix J is not proportional to a real vector, the determinant

of this system is nonzero: ∣∣∣∣
a b

c d

∣∣∣∣ �= 0.

In addition, the following identity holds for k = 1, 2:

Re
[
ak(u+ iv) + ak(p+ iq)

]∣∣∣u=−p
v=q

= Re
[
ak(−p+ iq)− ak(−p+ iq)

]
= 0. (13)

Therefore, the unique solution of (12) with respect to the variables u and v has the following form:

u = −p, v = q. (14)

In turn, the pair of equalities (14) is equivalent to the complex equation

(p+ iq) + (u− iv) = 0, (15)

which holds on the contour Γ. Taking into account the notation (10) and (5), we rewrite Eq. (15) as
follows:

l · ζ df

dζ
+ f + F

∣∣
Γ
= 0, f, F ∈ C1(D), l = l(J) =

i

2
l1 =

i

2

det(y,y)

det(x,y)
, ζ = x− iy. (16)

As a result, due to the invertibility of the transformations performed and taking into account (9),
(10), and (8), we arrive at the assertion.

Theorem 1. Let a matrix J have the form (4) and its eigenvector y is not proportional to a real

vector. Let solutions f(ζ) and F (ζ), ζ ∈ D, of the problem (16) be known, where the number l ∈ C is
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found by the formula (16). Then the function ω(z) corresponding to the same matrix J = Q′J ′
1(Q

′)−1,

considered as a solution of the problem (2), can be found by the formula

ω(ζ) = Q′ · (f, g)T = (y,y) · (f, g)T =

(
f, l · ζ df

dζ
+ F

)T

. (17)

The converse statement is also valid: If a solution ω(ζ) ∈ C1(D) of the problem (2) exists, then one
can construct a solution f, F of the problem (16).

We note the following important consequence of Eq. (16).

Remark 2. We represent the number l ∈ C in (16) in the exponential form: l = |l|eiξ. In (16), we

perform the substitution f = f1e
−iξ/, F = F1e

iξ/2. Then after cancellation by eiξ/2 the problem (16)
takes the following form:

|l| · ζ df1
dζ

+ f1 + F1

∣∣
Γ
= 0, f1, F1 ∈ C1(D), |l| = 1

2

∣∣∣∣
det(y,y)

det(x,y)

∣∣∣∣ . (18)

Hence the problems (16) and (18) are equivalent. Therefore, without loss of generality, we may examine
the problem (16) only for l = |l|.
3. Construction of two linearly independent solutions of the homogeneous Schwarz

problem. First, we construct solutions for a matrix J of the form (4), and then we generalize the
result to (2× 2)-matrices with an arbitrary multiple eigenvalue λ. Our main result is Theorem 3.

We consider the following complex polynomial ζ(z) with the real parameter a, where |a| > 2:

ζ(z) = z2 + az =
(
z +

a

2

)2 − a2

4
, a ∈ R, |a| > 2. (19)

Proposition 2. The polynomial ζ(z) with |a| > 2 conformally maps the unit circle K with boundary γ
to a certain domain D with the boundary Γ, where ζ(γ) = Γ.

Proof. Note that dζ/dz = 2z + a �= 0, if |z| ≤ 1 and |a| > 2. The function inverse to (19) has the
following form:

z(ζ) =

√
ζ +

a2

4
− a

2
, a ∈ R, |a| > 2. (20)

The function (20) has a branch point z0 = −a2/4. One can take any of two branches of the square root.
But when determining the selected branch of the root in (20), we assume that arg

(
ζ+a2/4

) ∈ (−π,+π],
so that the cut line runs along the ray (−∞, z0].

In (19), we perform the substitution z = eit, t ∈ (−π,+π]. Then we obtain the following parametriza-
tion of the contour Γ:

Γ = ζ(γ) :

{
x = cos 2t+ a cos t,

y = sin 2t+ a sin t,
t ∈ (−π, π], |a| > 2. (21)

We find points where y(t) in (21) vanishes, i.e., solve the equation

sin 2t+ a sin t = 2 sin t cos t+ a sin t = sin t(2 cos t+ a) = 0.

For |a| > 2, this equation has only two solutions: t = {π; 0} ∈ (−π, π], i.e., the curve Γ intersects
the axis Ox only at two points z1 and z2. According to the first equation (21), these points have
coordinates z1 = x(π) = 1 − a, z2 = x(0) = 1 + a, and for |a| > 2 they lie to the right of the branch

point z0 = −a2/4. Thus, Γ does not intersect the ray (−∞, z0] containing the cut of the function
D. Therefore, the closure D of the domain D does not intersect the ray (∞, z0]. Hence D lies in the
domain of holomorphy of the function z(ζ). �

We state the following assertion, which will be used later.
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Proposition 3. For a = a0 and a = −a0, a0 �= 0, the formula (21) defines the same contour Γ.

Proof. Let a = a0 and let the vector-valued function (21) take a certain value at t = t0. If a = −a0,
then (21) takes the same value at t = t0 + π. �

Remark 3. As is well known (see [1]), the interior of a circle cannot be conformally mapped into the

interior of an ellipse by an elementary function. Therefore, the contour Γ defined by the formulas (21)
is an ellipse.

We use the function (19) for constructing two linearly independent solutions of the problem (2)
corresponding to a matrix J of the form (4) and defined in the same domain D with boundary Γ given

by (21). To do this, by virtue of Theorem 1 and Remark 2, we must find two holomorphic functions
f and F in D as solutions of Eq. (16) for some values of the real parameter l = l(J).

As above, let K be the unit circle and γ = ∂K. In (16) we perform the substitutions ζ = ζ(z),

f(ζ) = f(ζ(z)) = f(z), and F (ζ) = F (ζ(z)) = F (z), where ζ(z) has the form (19). We obtain the
following functional equation:

l · ζ(z) · df/dz
dζ/dz

+ f(z) + F (z)
∣∣
γ
= 0,

dζ

dz
�= 0, z ∈ K = ζ−1(D), l ∈ R.

Now we multiply both sides of the last equality by ∂ζ/∂z:

l · ζ · df
dz

+ f · dζ
dz

+ F (z) · dζ
dz

∣∣∣
γ
= 0, z ∈ K, l ∈ R. (22)

The functions f and F in (22) are defined in the unit circle K with boundary γ = ∂K. We construct
holomorphic functions f = f(z) and F = F (z) as solutions of Eq. (22). Let c1, c2 ∈ R be indefinite

coefficients. In (22), we set

f(z) = c1z + c2z
2, f(z) = c1z + c2z

2,
df

dz
= c1 + 2c2z,

ζ(z) = z2 + az, ζ(z) = z2 + az,
dζ

dz
= 2z + a, F = F (z).

(23)

Now we perform the substitutions (23) in (22) and set z = eit. Then for determining the numbers c1
and c2 and the function F (z), we get the following expression:

l · (e−2it + ae−it
) · (c1 + 2c2e

it) +
(
c1e

−it + c2e
−2it

)
(2eit + a)

+ F (eit) · (2eit + a) ≡ 0, t ∈ (−π, π], l ∈ R. (24)

Equating the coefficients of e−it and e−2it in the first two terms of (24) to zero, we obtain

a(l + 1)c1 + 2(l + 1)c2 = 0, lc1 + ac2 = 0. (25)

Then taking into account (25), we reduce (24) to the following form:

2lac2 + 2c1 + (2z + a)F (z)
∣∣
γ
= 0;

hence

F (z) = −2(lac2 + c1)

2z + a
, 2z + a �= 0, |a| > 2, |z| ≤ 1. (26)

The equalities (25) form a system of linear homogeneous algebraic equations for the real variables c1
and c2. The determinant of the system (25) has the form

Δ = (l + 1)(a2 − 2l);

therefore, Δ = 0 for l = −1 and for l = a2/2.
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It is easy to show that for l = −1, nontrivial solutions (25) yield the following solutions for (23)

and (26):

f(z) = c2ζ(z), F (z) = 0.

In this case,

f(z(ζ)) = c2ζ(z(ζ)) = c2ζ.

Therefore, using the formula (17), we obtain the linear function ω(ζ) as a solution of the problem (2).

But a linear function can be a solution to the homogeneous Schwarz problem in a finite domain D
only if Reω(ζ) ≡ 0. Such solutions are quite trivial, and it makes no sense to study them.

Let us consider the second case:

l =
a2

2
, a = ±

√
2l. (27)

Assume that for some matrix J of the form (4), the number l is such that l = |l| > 2 (see (16)). Here,

for definiteness, we set a = +
√
2l > 2 in (27); then Proposition 2 is valid. Take any nonzero solution

(c1, c2) of the system (25) for the values of the parameters l = l and a = +
√
2l. Hence we obtain

the functions f(z) and F (z) (see (23) and (26)). Next, performing the substitution (20), due to the
invertibility of the transformation of Eq. (16) into Eq. (22), we obtain the functions f(ζ) and F (ζ) as

solutions of Eq. (16) for l = |l| in the domain D with boundary Γ (see (21)).
Now we assume that for a matrix J of the form (4), the number l is such that l = |l|eiξ, where ξ �= 0

and |l| > 2. Then for the values of the parameters l = |l| and a = +
√

2|l|, we also find a solution (c1, c2)
of the system (25) and, respectively, the functions f1 and F1 (see (23) and (26)). Then we perform the

substitution (20) and apply the substitutions f1 = eiξ/2 · f and F1 = e−iξ/2 · F , which are inverse to

those made in Remark 2. As a result, we obtain solutions f(ζ) and F (ζ) of Eq. (16) for given l. Then, in
both cases, using the formula (17) and taking into account Theorem 1, we construct a solution ω+

a (ζ)
of the homogeneous Schwarz problem, which is defined in the domain D with boundary Γ (see (21))

and corresponds to thematrix J of the form (4).

Now in (27), we set a = −√
2|l|. Then, using the scheme described above, we obtain another

solution (c1, c2) of the system (25) and, respectively, another solution ω−
a (ζ) of the homogeneous

Schwarz problem. But at the same time, the number l remains the same. Therefore, the solution of

ω−
a (ζ) corresponds to the same matrix J of the form (4). According to Proposition 3, this solution is

defined in the same domain D with the boundary Γ (see (21)).
For the solutions constructed, we prove the following assertion .

Proposition 4. The solutions ω+
a (ζ) and ω−

a (ζ), ζ ∈ D, of the homogeneous Schwarz problem are
linearly independent.

Proof. On the contrary, assume that α1ω
+
a +α2ω

−
a = 0, where at least one of the numbers α1 or α2 is

nonzero. According to (17) we have

ω+
a = Q′ · (f1, g1), ω−

a = Q′ · (f2, g2).
Then

α1Q
′ · (f1, g1)T + α2Q

′ · (f2, g2)T = 0, |α1|+ |α2| �= 0.

Multiplying both sides of this relation by the matrix (Q′)−1 from the left, we obtain the equality

α1f1 + α2f2 = 0, |α1|+ |α2| �= 0, (28)

which means that the functions f1 and f2 are linearly dependent. But according to (25), (23), and (20),

for l = l and a = +
√
2|l| we have

f1(ζ) = z −
√

2|l|
2

z2
∣∣∣
z=

√
ζ+

|l|
2
−
√

|l|
2

= (1 + |l|)
√

ζ +
|l|
2

−
√

|l|
2
ζ − (1 + |l|)

√
|l|
2
.
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At the same time, for l = l and a = −√
2|l| we have

f2(ζ) = z +

√
2|l|
2

z2
∣∣∣
z=

√
ζ+

|l|
2
+
√

|l|
2

= (1 + |l|)
√

ζ +
|l|
2

+

√
|l|
2
ζ + (1 + |l|)

√
|l|
2
.

Thus, the functions f1(ζ) and f2(ζ) are linearly independent, which contradicts (28). The contradiction
proves the linear independence of the functions ω+

a (ζ) and ω−
a (ζ). �

As a result, taking into account Propositions 3 and 4, Theorem 1, and Remark 2, we arrive at the

following theorem.

Theorem 2. Let a matrix J of the form (4) be such that |l(J)| > 2 in (16). Moreover, assume that
its eigenvector y is not proportional to a real vecor. Then in the domain D bounded by a contour Γ
of the form (21), there exist two linearly independent solutions ω+

a (ζ) and ω−
a (ζ) of the homogeneous

Schwarz problem (2), which correspond to the matrix J and the values of the parameter a = ±√
2|l|.

Now we summarize the results. Let a matrix Jλ ∈ C
2×2 have a multiple eigenvalue λ = λ1 + λ2i,

where λ2 �= 0, and the corresponding eigenvector y is not proportional to a real vector. As above,

we denote by Q = (x,y) a Jordan basis of this matrix. For the matrix Jλ, the number l1 = l1(Jλ) is
defined by the same formula (5). Therefore, l = l(Jλ) is defined by the formula (16).

Remark 4. Proposition 1 is also valid for matrices with an arbitrary multiple eigenvalue λ since its
proof was based only on the Jordan form of the matrix J .

Proposition 5. Let a matrix J have the form (4). We introduce the notation Jλ = λ1E+λ2J , where

λ2 �= 0. Then, taking into account the notation (5) and (16), the following equalities hold:

|l1(Jλ)| = |λ2 · l1(J)|, |l(Jλ)| = |λ2 · l(J)|. (29)

Proof. Taking into account Remark 4, we apply Proposition 1. We choose Jordan bases of the matrices J
and Jλ. We take a vector x �= 0 such that

(J − iE)x �= 0, (Jλ − λE)x �= 0.

Then

Qλ = (x,y1) =
(
x, (Jλ − λE)x

)

is a Jordan basis of Jλ. Note that

Jλ − λE = λ1E + λ2J − λ1E − λ2iE = λ2(J − iE).

Moreover, Q = (x,y2) =
(
x, (J − iE)x

)
is a Jordan basis for J . Thus, the generalized eigenvector x

in both cases is the same, while the eigenvectors are related by the relation y1 = λ2y2. Substituting

this equality into (5) and taking into account (16) and Proposition 1, we obtain (29). �
As above, assume that the matrix Jλ ∈ C

2×2 has a multiple eigenvalue λ. Then the matrix Jλ ∈ C
2×2

has a multiple eigenvalue i. Let the conditions of Theorem 2 be fulfilled for J , i.e., |l(J)| > 2. By virtue
of Proposition 5, this inequality is equivalent to the inequality |l(Jλ)| > 2|λ2|. In the solutions ω±

a (ζ) of

the homogeneous Schwarz problem corresponding to the matrix J , we perform the following invertible
substitution:

x = x′ + λ1y
′, y = λ2y

′, λ2 �= 0. (30)

It is easy to show that after the substitution (30), the functions ω±
a (x

′, y′) become J-analytic functions

with the matrix Jλ. Obviously, they remain linearly independent. After the substitution (30) into (21),
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we see that the pair of functions ω±
a (x

′, y′) is a solution of the problem (2) in the domain Dλ bounded

by the following contour Γλ = ∂Dλ:

Γλ :

⎧
⎪⎪⎨

⎪⎪⎩

x′ = cos 2t+ a cos t− λ1

λ2
(sin 2t+ a sin t),

y′ =
1

λ2
(sin 2t+ a sin t),

t ∈ (−π, π], |a| > 2, λ2 �= 0. (31)

As a result, taking into account Theorem 2 and (29), we arrive at the following theorem, which is the
main result of the present paper.

Theorem 3. Let a matrix Jλ have a multiple eigenvalue λ = λ1+λ2i, λ2 �= 0, and the corresponding
eigenvector is not proportional to a real vector. Moreover, let |l| = |l(Jλ)| > 2|λ2| in the formula (16).
Then in the domain D bounded by the contour Γ (see (31)), there exist two linearly independent

solutions ω+
a (x

′, y′) and ω−
a (x

′, y′) of the homogeneous Schwarz problem (2), which correspond to the

matrix Jλ and the values of the parameter a = ±√|2l/λ2|.
As an example, we construct two functions ω+

a (ζ) and ω−
a (ζ), which correspond to the matrix J of

the form (3) considered above with a multiple eigenvalue λ = i. The Jordan form J1 and a Jordan
basis Q (defined nonuniquely) of the matrix (3) are as follows:

J1 =

(
i 0
1 i

)
, Q = (x,y) =

(
1 3i
0 1

)
, J =

(
4i 9
1 −2i

)
= QJ1Q

−1. (32)

In (32), the eigenvector y = (J − iE) ·x = (3i, 1) of the matrix J is not proportional to a real vector.
According to (16), we have l = l(J) = 3 > 2, so we can apply Theorem 2 for J . According to (17), we
find

ω±
a (ζ) = (y,y) ·

(
f, 3ζ

df

dζ
+ F

)T

=

(−3i 3i
1 1

)
·
⎛

⎝
f

3 ζ
df

dζ
+ F

⎞

⎠ =

⎛

⎜⎝
9i ζ

df

dζ
− 3if + 3iF

3 ζ
df

dζ
+ f + F

⎞

⎟⎠ . (33)

Both functions ω+
a (ζ) and ω−

a (ζ) are calculated by the same formula (33). However, obviously, the

functions f(ζ) = f(z(ζ)) and F (ζ) = F (z(ζ)) in (33) for a = +
√
2l and a = −√

2l are different; we

find them by the formulas (25), (23), (26), (27), and (20). We write these functions for ω+
a (ζ) in (33):

l = 3, a = +
√
2l =

√
6, c1 = 1, c2 = −

√
6

2
,

f(z) = z −
√
6

2
z2, F (z) =

16

2z +
√
6
, z(ζ) =

√
ζ +

3

2
−

√
6

2
, ζ ∈ D,

and for ω−
a (ζ) in (33):

l = 3, a = −
√
2l = −

√
6, c1 = 1, c2 =

√
6

2
,

f(z) = z +

√
6

2
z2, F (z) =

16

2z −√
6
, z(ζ) =

√
ζ +

3

2
+

√
6

2
, ζ ∈ D.

In this case, according to the formula (21), taking into account Proposition 3, we conclude that the
contour of Γ = ∂D has the following parametrization:

Γ :

{
x = cos 2t+

√
6 cos t,

y = sin 2t+
√
6 sin t,

t ∈ [0, 2π).

The fact that the function (33) corresponds to a matrix J of the form (32) is verified by substitution
in (1). The equality Reω(ζ)

∣∣
Γ
= 0, where Γ = ζ(γ), for (33) is not as obvious as for vector quadratic
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forms. We prove this equality. According to the algorithm described above with l = 3, the functions

f and F in (33) are found from the condition

3 ζ
df

dζ
+ f + F

∣∣
Γ
= 0,

from which

F
∣∣
Γ
= −3 ζ

df

dζ
− f. (34)

Substituting (34) into (33) we obtain the equality

ω±
a (ζ)

∣∣
Γ
=

(−6iRe f, 2i Im f
)
,

whence Reω±
a (ζ)

∣∣
Γ
= 0, which proves the statement.

4. Relationship between the parameter l1 and the number tJ . Let us consider an interesting
generalization of the formula (5). Let λ = λ1 + λ2i, λ2 �= 0. We introduce the notation

J =

(
a11 a12
a21 a22

)
, a21 �= 0, tJ =

|λ2 · a21|∣∣∣ Im
[
a21(a11 − λ)

]∣∣∣
∈ R. (35)

The following assertion was proved in [2].

Theorem 4. Let a nontriangular matrix J ∈ C
2×2 of the form (35) have a multiple eigenvalue λ =

λ1 + λ2i, λ2 �= 0, and let the corresponding eigenvector be not proportional to a real vector. Then the

existence of the corresponding solutions of the problem (2) in the form of quadratic vector-forms is
equivalent to the condition 0 < tJ < 1 in (35).

In particular, for the matrix J of the form (3), we have tJ = 1/3.

The number l1(J) defined by the formula (5) was not considered in [2]. We prove the following
assertion.

Proposition 6. The number tJ from (35) and the number l1 from (5) are related by the formula

tJ =
2|λ2|
|l1| . (36)

Proof. Based on Remark 4, we use Proposition 1. To calculate the absolute value |l1| of the number l1
(see (5)), we choose the following Jordan basis Q of the matrix J :

x = (1, 0), y = (J − λE) · x = (a11 − λ, a21), a21 �= 0, Q = (x,y). (37)

According to the formula (5), taking into account the notation (35), we have

l1 =
det(y,y)

det(x,y)
=

∣∣∣∣
a11 − λ a11 − λ
a21 a21

∣∣∣∣
∣∣∣∣
1 a11 − λ
0 a21

∣∣∣∣
=

a21 · (a11 − λ)− a21 · (a11 − λ)

a21

=
a21 · (a11 − λ)− a21 · (a11 − λ)

a21
=

2 Im
[
a21 · (a11 − λ)

] · i
a21

=
−2 Im

[
a21 · (a11 − λ)

] · i
a21

. (38)

From (38), taking into account (5) and (35), we obtain (36). �
By virtue of Proposition 6, we reformulate Theorem 4 as follows.
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Theorem 5. Let a nontriangular matrix J ∈ C
2×2 have a multiple eigenvalue λ = λ1 + λ2i, λ2 �= 0,

and let the corresponding eigenvector be not proportional to a real vector. Then the existence of the
corresponding solutions of the problem (2) in the form of quadratic vector-forms is equivalent to the
condition |l1(J)| > 2|λ2| in (5).

5. Conclusion. Instead of the unit circle, one could consider a circle of arbitrary radius r for
constructing the functions ω±

a (ζ), ζ ∈ D, for λ = i. However, simple calculations show that this will

not lead to an improvement in the estimate for (i.e., the decreasing the value of |l|) in Theorems 2
and 3. Moreover, we note the following fact: in Theorem 3, we have |l(Jλ)| > 2|λ2|, i.e., according
to (16), we have |l1(Jλ)| > 4|λ2|. Therefore, by virtue of Theorem 5, for all matrices satisfying the

conditions of Theorem 3, solutions of the problem (2) in the form of quadratic vector-forms are also
possible. Of course, they can be defined on ellipses.
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