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I. Solution 

The 1-st order wave equation was invented in 
1928 by P.A.M.Dirac [1] in the form    Emp


 

and was improved by W. Pauli [2] into (*).  
   .0  m  (1) 

Despite of simple appearance it is a system of 4 
equations for 4-component bispinor . 

Evidently .ˆ 22  m  A little exercise in algebra 
gives  
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transform the equation into the form  
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It is seen that radial and angular variables are 

separated. Taking )()( nr
rR 
  we divide the equation 

into two ones: radial (with )З ;2 rEvikr   and angular 

(with Ô )  
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Both equations have two solutions. Radial 
functions )(R  are M  and W  solutions of Whittaker 
equation (3),  
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* Notations:    ;ˆ
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As usual    2 . Bispinor  has 

four components depending on r, , .  

having identical indices and arguments but different 
asymptotic behavior There are also two angular 
functions  , corresponding to states with  :21lj  

.   
Thus, we have obtained four linear independent 

solutions forming a complete system. The specific choiсe 
of them depends on energy E and angular momentum j: 
for E < m the M  must be taken (and for E  m — the 
W ). A similar rule applies to angular functions:   for 

21lj  and   for .21lj  

II. Analysis 

Being solution of 2-nd order equation did Ψ 
satisfy the 1-st order equation? The answer is yes, but 
along with   0ˆ  m  it satisfies also   0ˆ  m . We 
may return +m back to –m changing   into 55    by 
means of transformation  5  which is equivalent to 
reversing all signs in П’s. So, this class of solutions has e 
> 0 and is going backwards in space — it is a positron!  

The next question is symmetry of found solutions. 

Defining the “Whittaker Hamiltonian” 






 4
2H  

the Whittaker equation becomes . ivH  Along with 

H1S  there exist ,4
2
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S  commuting with S1 

according to [S1, S2] = iS3, where S3 = i. The algebra 
closes with [S2, S3] = iS1 and [S3, S1] = –iS2.  

This algebra is called SO(2,1) [3]. It includes the 
“ladder” operator S+ = S2 + iS3 which commutes with 
Hamiltonian as .  SSS iHH  Acting on Ψv we have 

.) vvv SivSS   iH(  It means that 1  vv aS  — 
operator S+ realizes movement along the spectrum of ν with 
unit step! In other words, v = v0+N, where N = 0,1,2… 
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Thus, the symmetry quantizes Coulomb parameter 

ν and associated energy .
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III. Remarks 

Why Dirac had written    Emp


? The 
answer is evident: to obtain the connection between energy 
and momentum 222 Emp 


 (it follows from 


).   

However, choice  = 3, 


1  (adopted by 
Dirac and followers) is not the most successful, 
especially for proving the relativistic invariance. Of 
course, this is not a mistake but flaw.  

It was corrected by Pauli [2] — in his hands the 
equation obtained relativistic and gauge-invariances 
which are almost obvious.  

As for me, the choice 0 = 1, 


2i  seems more 
convenient**, in particular spin — orbit inter-action 

  2
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 becomes diagonal   .З 2

3 rn
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  Nevertheless, 
the Dirac choice is still used by almost everyone (excluding 
V.Fock). I hope that Part I is convincing enough to 
demonstrate the benefits of my choice. 

                                                        
* Its relation to Sommerfeld formula is discussed in [4]. 
**  As is shown in “The Lamb shift” (to be published) 

Another example — an interpretation of “low” 
spinor  as positron wave function – is simply wrong. In 
reality positron wave function )(

5
)( ep   (see Part II) 

needs both components  and .  
These remarks are addressed to my colleagues, 

performing complicated calculations of physical 
processes – their complexity is often connected with 
unsuccessful choice of one or another representation. 
For example, momentum representation is very 
comfortable in scattering events but completely failed 
in bound states. 
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