Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Новгородский государственный университет имени Ярослава Мудрого»

Кафедра художественной и пластической обработки материалов

СВОЙСТВА ДРЕВЕСИНЫ

Методические рекомендации Для студентов направления подготовки 54.03.01–Дизайн (Профиль – Графический дизайн), 29.03.04 -TXOM

> Составитель Доцент кафедры А.А. Тихонов

Содержание

1 Цель работы	3
2 Определение влажности древесины весовым способом	3
2.1 Определение плотности при влажности в момент испытаний	4
2.2 Определение плотности древесины в абсолютно сухом состоянии	5
2.3 Определение плотности древесины при стандартной влажности	5
2.4 Определение условной плотности древесины	6
2.5 Определение плотности древесины способом вытеснения воды	6
3 Определение усушки древесины	7
Контрольные вопросы	9
Рекомендуемая литература	9
Приложение А Ошибка! Закладка не определ	лена.

1 Цель работы

Научиться определять и знать основные свойства древесины.

2 Определение влажности древесины весовым способом

влагу В древесине различают гигроскопическую свободную. Гигроскопическая содержится в стенках клеток, а свободная заполняет полости клеток и капилляры. Влажность древесины, при которой стенки клеток полностью насыщены водой, а свободная влага отсутствует, называется точкой насыщения волокон. Изменение влажности от точки насыщения волокон (влажность 25÷30%) и ниже приводит к изменению линейных размеров и прочности древесины. Влажность древесины следует определять на образцах – прямоугольных размером $20 \times 20 \times 30_{\text{MM}}$. Влажный образец призмах предварительно взвешивается на аналитических весах. Затем он сушится при температуре 100÷105°С. Высушивание ведется не менее 6 часов для древесины мягких пород и 10 часов для твердых пород. Сушку ведут до постоянной массы, для этого через каждые два последующих часа производится контрольное взвешивание. Рассчитать абсолютную и относительную влажность образца в процентах (при взвешиваниях на аналитических весах с точностью 0,1%) можно по формулам:

Waճc =
$$(mw - mo) \times 100\%/mo$$
,
Woth = $(mw - mo) \times 100\%/mw$,

где: Wабс – абсолютная влажность, %;
Wотн – относительная влажность, %;
mw – масса образца до высушивания, г;
mo - масса образца после высушивания, г.

Записать в таблицу 1 результаты определения влажности.

Таблица 1 Определения влажности древесины весовым методом.

№ опыта	Macca	Macca	Macca	Влажность	Влажность
	образца до	образца после	испарившейся	абсолют. %	относит. %
	сушки,	сушки,	влаги,	$ m W_{a fc}$	$\mathbf{W}_{ ext{oth}}$
	m_{w}	m_{o}	m _w - m _o		

2.1 Определение плотности при влажности в момент испытаний

Масса влажности образцов в момент испытаний, т.е. при данной влажности (W), определяется взвешиванием на аналитических весах с точностью до 0,001г. Штангенциркулем или микрометром на середине высоты образца измеряют размеры поперечного сечения в тангенциальном направлении — a_w , радиальном — l_w и длину образца l_w вдоль волокон по середине ширины с точностью 0,1мм.

Далее вычисляют объем образца с точностью 0,01 см³ по формуле:

$$V_w = a_w \times b_w \times l_w$$
,

где: $a_{\rm w}$ – размер образца в тангенциальном направлении при влажности, см;

 $b_{\rm w}\,$ - размер образца в радиальном направлении при влажности, см;

 $l_{\rm w}\,$ - длина образца при влажности, см.

Плотность при влажности в момент испытаний (ρ_w) в г/см 3 вычисляется по формуле:

$$\rho_{\rm w} = m_{\rm w}/V_{\rm w};$$

где: m_w – масса влажного образца, г;

 $V_{\rm w}$ – объем влажного образца, см³.

Результаты измерений и вычислений заносят в протокол журнала.

2.2 Определение плотности древесины в абсолютно сухом состоянии

Образцы высушиваются до абсолютно сухого состояния. Взвешивание и измерение образцов производится, как и в предшествующей работе.

Плотность в абсолютно сухом состоянии (ρ_0) в г/см³ вычисляют по формуле:

$$P_0 = m_0 / V_0$$
;

где: m_0 – масса образца в абсолютно сухом состоянии, г;

 V_0 – объем образца в абсолютно сухом состоянии, см³.

Результаты измерений и вычислений заносят в протокол журнала.

2.3 Определение плотности древесины при стандартной влажности

Увеличение содержания воды в древесине ведет к увеличению плотности древесины. Поэтому для возможности сравнения показателей плотности и прочности принято определять их при стандартной влажности (W=12%).

Плотность древесины пересчитывают на влажность 12% (ρ_{12}) в кг/м³ для древесины белой акации, березы, бука, граба и лиственницы по формуле:

$$\rho_{12} = \rho/0.957$$

и для остальных пород по формуле:

$$\rho_{12} = \rho_0 / 0.946$$
;

где: ρ_{12} = плотность древесины при влажности 12%, кг/м³; 0.957 и 0.946 – коэффициенты пересчета.

Результаты вычислений заносят в протокол журнала.

2.4 Определение условной плотности древесины

Условная плотность представляет собой отношение массы образца в абсолютно сухом состоянии к объему при влажности, равной или больше предела гигроскопичности. Используются образцы стандартной формы, что и в предшествующих видах определения плотности. Измерение образцов производится как при определении других видов плотности. После измерения образцы сушат до абсолютно сухого состояния и взвешивают. Условную плотность ($\rho_{\rm усл}$) кг/м³ вычисляют по формуле:

$$\rho_{\text{усл}} = m_0/V_{\text{w}};$$

где: m_0 – масса образца в абсолютно сухом состоянии, кг;

 $V_{\rm w}$ — объем образца при влажности равной или больше предела гигроскопичности, ${\rm m}^3$. Результаты испытаний заносят в протокол журнала.

Таблица 2 - Определения плотности древесины на образцах в форме прямоугольной призмы

No	Размеры образцов, мм До высушив. После высуш.					Масса образца, г		Объемы образцов		Плотность, кг/м ³				
	a_{W}	b_{W}	l_{W}	\mathbf{a}_0	b_0	10	m_{W}	m_0	V_{W}	V_0	ρ_{w}	ρ_0	ρ_{12}	Русл

2.5 Определение плотности древесины способом вытеснения воды

Данный способ основан на измерении объема воды, вытесненной погруженным в нее образцом древесины. Метод дает приближенные данные о плотности древесины, но позволяет использовать нестандартные образцы неправильной геометрической формы. Нестандартной формы образец иглой погружают в цилиндр с водой. Объем вытесненной воды определенный по

делениям на цилиндре характеризует объем погруженного образца древесины. Масса образца определяется взвешиванием. Плотность образца нестандартной формы (ρ_w) в кг/м³ вычисляется по формуле:

$$\rho_{\rm w} = m_{\rm w}/V_{\rm w};$$

где: m_w – масса влажного образца, кг;

 $V_{\rm w}$ – объем влажного образца, м³.

При влажности образцов, равной или больше предела гигроскопичности, рассмотренный метод определения объема образца может быть использован для последующего расчета условной плотности древесины.

3 Определение усушки древесины

Усушкой древесины называется уменьшение линейных размеров и объема древесины в процесс испарения связанной влаги, находящейся в клеточных стенках. Древесина усыхает в разных структурных направлениях неодинаково, так, как полная усушка древесины вдоль волокон составляет около 0,1%, в радиальном направлении 3÷5% и в тангенциальном 6÷12%. Объемная усушка в среднем равняется 12÷15%. Определение полной усушки проводят на образцах, имеющих влажность больше 5%. Штангенциркулем на середине высоты образца замеряют линейные размеры в радиальном (в), тангенциальном (а) направлениях по середине его ширины и длину образца (L) с точностью 0,005 мм. Результаты замеров заносят в протокол журнала. Образцы помещают в сушильный шкаф с температурой 100÷105°С и производят выслушивание до абсолютно сухого состояния. Высушенные образцы остывают в эксикаторе с безводным хлористым кальцием. На следующем занятии студенты извлекают из эксикатора свои образцы и

немедленно проводят измерения линейных размеров. Затем рассчитывают усушки древесины с точность 0,1% .

Усушка по тангенциальному направлению: $Y_t = (a_{\text{мах}} - a_o) \times 100\% / a_{\text{маx}}.$ Усушка по радиальному направлению: $Y_r = (b_{\text{маx}} - b_o) \times 100\% / b_{\text{маx}}.$ Объемная усушка: $Y_v = (V_{\text{маx}} - V_o) \times 100\% / V_{\text{мax}}.$

где: $a_{\text{мах}}, b_{\text{мах}}, V_{\text{мах}}$ – линейные размеры и объем образцов до высушивания, мм; $a_{\text{o}}, b_{\text{o}}, V_{\text{o}}$ - линейные размеры и объем образцов после высушивания, мм;

Коэффициент усушки показывает величину усушки при испарении из древесины 1% связанной влаги. Рассчитывают коэффициент усушки с точностью 0,01 %.

При тангенциальной усушке: $K_t = V_{t \text{ мах}}/W$;

При радиальной усушке: $K_{\Gamma} = Y_{r \text{ мах}}/W$;

При объемной усушке: $K_v = Y_{v \text{ мах}}/W$;

где: Y_{tmax} , Y_{rmax} , Y_{vmax} – усушка по тангенциальному, радиальному направлениям и объемная, %;

W — максимальное содержание связанной влаги в древесине примерно 30%.

Результаты измерений занести в таблицу 3.

Таблица 3 - Определения радиальной, тангенциальной и объемной усушки и коэффициентов усушки

No		Раз	меры об	бразца,	MM		Усушка %			Коэффициенты			
	До ві	ысушив	ания	После высушив.						линейной			
				-						усушки			
	a_{W}	b_{W}	l_{W}	a_0	b_0	l_0	$\mathbf{y}_{ ext{tmax}}$	\mathbf{y}_{rmax}	\mathbf{y}_{vmax}	K _t	K_{Γ}	K_{v}	

Контрольные вопросы

- 1) Что такое гигроскопическая и свободная влага?
- 2) Как рассчитывается абсолютная влага?
- 3) Как рассчитывается относительная влага?
- 4) Как определяется плотность древесины в абсолютно сухом состояние?
- 5) Как определяется плотности древесины при стандартной влажности?
 - 6) Как определяется усушка по радиальному направлению?
 - 7) Что такое объёмная усушка?

Рекомендуемая литература

- 1 Физические свойства древесины: Метод. указания к лабораторным работам по курсу «Древесиноведение. Лесное товароведение». Для студентов спец. 26.02.00/ Сост. Ц.Д.Дамдинов, Ч.С.Лайдабон, С.В.Эрдынеев. Улан-Удэ: Изд-во ВСГТУ, 2003. 22с.
- 2 ГОСТ 16489.7-71. Древесина. Методы определения влажности. М.: Стандартиздат.1978. 20с.
- 3 ГОСТ 16489.1-84. Древесина. Методы определения плотности. -М.: Стандартиздат, 1974. 24c.
- 4 ГОСТ 16483.37-80. Древесина. Метод определения радиальной и тангентальной усушки. М.: Стандартиздат, 1978. 20с.
- 5 Уголев Б.Н. Древесиноведение с основами лесного товароведения.-М.: Лесн. пром-ть, 1975.-382с.