Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Новгородский государственный университет имени Ярослава Мулрого»

«Новгородский государственный университет имени Ярослава Мудрого» Институт информационных и электронных систем

Кафедра прикладной математики и информатики

РАБОЧАЯ ПРОГРАММА УЧЕБНОГО МОДУЛЯ МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ НА ЭВМ

Учебный модуль по направлению подготовки 01.03.02 Прикладная математика и информатика

СОГЛАСОВАНО:

Начальник учебного отдела О.Б. Широколобова

РАЗРАБОТАЛ:

Принято на заседании кафедры ПМИ

Заведующий кафедрой ПМИ

А.В. Колногоров

1 Цели и задачи учебного модуля

Освоение материала УМ имеет цели:

- привить студентам понимание сущности математических моделей и математического моделирования, обучить их основам теории математического моделирования;
- научить студентов разрабатывать и исследовать математические модели, привить им навыки в выборе и реализации на ЭВМ алгоритмов типовых блоков математических моделей:
- продолжить развитие у студентов навыков в самостоятельной индивидуальной и коллективной исследовательской работе, в том числе на ЭВМ.

Для достижения указанной цели в УМ решаются следующие задачи:

- изучение основ теории математического моделирования;
- получение студентами практических навыков в разработке математических моделей и в моделировании на ЭВМ.
- получение студентами навыков поиска необходимой им литературы и навыков грамотного с научной точки зрения изложения результатов их работы (их исследований) в отчётных материалах и в выступлениях.

2 Место учебного модуля в структуре ОП направления подготовки

Модуль "ММ на ЭВМ" (математическое моделирование на ЭВМ) относится к разделу 1 Дисциплины по выбору ОП. Он читается в 7-м семестре согласно утвержденному учебному плану.

Модуль "ММ на ЭВМ" использует соответствующие разделы модулей "Математический анализ", "Алгебра, геометрия и математическая логика", "Дифференциальные уравнения", "Разностные уравнения", "Уравнения математической физики", "Теория вероятностей и математическая статистика", "Информатика", "Алгоритмические языки", "Вычислительная математика"

Требования к уровню освоения студентами материала модуля "ММ на ЭВМ" определяются соответствием его требованиям ОП НовГУ им Ярослава Мудрого к уровню знаний и умений студентов, приобретаемых ими при освоении модулей учебного плана.

3 Требования к результатам освоения учебного модуля

Процесс изучения УМ направлен на формирование и дальнейшее развитие нижеперечисленных общекультурных (ОК), профессиональных ПК) и профессиональных профилирующих (ПРК) компетенций. В результате освоения УМ студент должен знать, уметь и владеть:

Код компе- тенции	Уровень освоения компетен- ции	Знать	Уметь	Владеть
OK- 15	приме- нение	методы математиче- ского моделирования для решения различ- ных профессиональ- ных и социальных за- дач.	использовать методы математического моделирования для решения различных профессиональных и социальных задач.	методами построения математических моделей и исследования с их помощью различных профессиональных и социальных задач.
OK- 16	приме- нение	о необходимости интеллектуального и профессионального саморазвития и о необходимости повышению своей квалификации в области математического моделирования.	самостоятельно и осмысленно знакомить- ся с научными публика- циями в печати и в сети Internet в области мате- матического моделиро- ва-ния, повышая свою квалификацию	методами интеллекту- ального и профессио- нального саморазвития, стремится к повышению своей квалификации в области математического моделирования
ПК-3	приме- нение	назначение математических моделей и основные этапы их разработки.	применять математическое моделирование в исследовательской и прикладной деятельности.	методами математического моделирова-ния и применять их в исследовательской и прикладной деятельности.
ПК-6	приме- нение	методы передачи и обмена цифровой информацией между различными объектами.	получать помехозащи- щённые коды для обеспечения правильно- сти приёма переданной информации.	навыками успешного участия в НИРС по проблемам математического моделирования, в том числе в коллективной работе.
ПРК- 2	приме- нение	порядок и задачи этапов работы по созданию математического и информационного обеспечения задач различного профиля с использованием математических моделей.	в составе студенческого коллектива разрабатывать математическое и информационное обеспечение задач различного профиля с использованием математических моделей.	навыками в составе студенческого коллектива разрабатывать математическое и информационное обеспечение задач различного профиля с использованием математических моделей.
ПРК-	приме- нение	порядок и задачи эта- пов разработки про- граммных модулей различного назначе- ния с использованием математического мо- делирования.	решать задачи различного профиля, включая разработку программных модулей, с использовани-ем математического моделирования.	навыками решения задач различного профиля, включая разработку программных модулей, с использованием математического моделирования.

4 Структура и содержание учебного модуля

4.1 Трудоемкость учебного модуля

Учебная работа (УР),	Всего	Распределен	ие по сем	местрам	Коды формир-х
Учебные элементы модуля (УЭМ)	Deero	7-й сем.	-	-	компетенций
Трудоемкость модуля в за-					
четных единицах – ЗЕТ	6	6	-	-	
Распределение трудоемкости по видам УР в ЗЕТ и в академических часах (АЧ): УМ: Математическое модели-					
рование на ЭВМ	216	216	-	-	0.72 1.7 1.6
- лекции	36	36	-	-	OK-15,16,
- практические занятия	18	18	-	-	ПК-3, 6, ПРК-2, 3
- лабораторные работы	36	36	-	-	11F K-2, 3
- в т.ч. аудиторная СРС	18	18			
Итого:	90	90	-	-	
- внеаудиторная СРС	126	126	-	-	ПК-3, 6
- в т.ч.: - курсовая работа	36	36	-	-	ПРК-2, 3
- экзамен	36	36	-	-	
Аттестация:					
экзамен	36	36	-	-	

^{*)} зачеты принимаются в часы аудиторной СРС.

4.2 Содержание и структура разделов учебного модуля

Темы

0 Введение

Модель и оригинал, сущность моделирования. Физическое и математическое моделирование. Функциональная полнота и адекватность модели оригиналу, требования к моделям. Место моделирования в научных и практических исследованиях, классы задач, решаемых с помощью математического моделирования. Разновидности математических моделей. Основные этапы разработки и исследования моделей. Модульность структуры моделей.

1 Основы программной реализация моделй на ЭВМ

Среды программирования. Среда Delphi как средство исследования математически моделей. Выполнение основных операций в среде Delphi. Вывод результатов моделирования из среды Delphi в буфер ЭВМ. Ввод графической информаци в среду Delphi. Страничная организация программ в среде Delphi. Реализация движения в математичнских моделях.

2 Детерминированные модели

Основные структуры. Математический аппарат и основные задачи. Модели с модулярными операциями. Последовательности максимальной длины (М-последовательности), их свойства и их моделирование. Применение аппарата многочленов и матриц над конечными полями Галуа. Теоремы о сложении М-последовательностей и о сдвигающем векторе.

3 Стохастические модели

3.1 Общие сведения о стохастических моделях

Структура стохастической модели. Имитация случайностей и требования к процедурам имитации. Тестирование и выравнивание вероятностей P(1) и P(0) моделируемых последовательностей случайных величин.

3.2 Моделирование равновероятных случайных величин

Классификация методов моделирования. Использование физических датчиков случайности. Выравнивание вероятностей появления двоичных символов. Рекуррентные процедуры генерирования последовательностей псевдослучайных чисел: квадратов, произведений, мультипликативный конгруэнтный, смешанный конгруэнтный, перемешивания и др. Их характеристики. Моделирование псевдослучайных чисел с использованием М-последовательностей: "классический" и оперативный методы, характеристики моделируемых последовательностей, возможности улучшения этих характеристик. Совместное использование датчиков случайных и псевдослучайных величин. Применение псевдослучайных и случайных последовательностей в технических системах.

3.3 Моделирование случайных событий и дискретных случайных величин

Моделирование независимых и зависимых, несовместных и несовместных событий. Моделирование цепей Маркова. Общий метод моделирования зависимых и независимых случайных величин. Частные методы: реализация геометрического, треугольного (распределение Пирсона) и биномиального распределений.

3.4 Моделирование непрерывных случайных величин

Общие методы: метод обратной (квантильной) функции, метод суперпозиции, метод отбора (метод Неймана). Частные методы: реализация нормального и колоколообразного распределений. Усечение законов распределения: необходимость усечения, учет особенностей моделируемой задачи при определении закона распределения после усечения.

3.5 Моделирование и анализ случайных процессов и случайных последовательностей

Общие сведения. Моделирование случайных процессов. Моделирование дискретных случайных последовательностей с заданными одномерным законом распределения и корреляционной функцией. Моделирование временных рядов. Модели прогнозирования временных рядов. Анализ текущих характеристик нестационарных случайных процессов и случайных. последовательностей.

3.6 Моделирование случайных векторов

Общие сведения. Моделирование векторов с нормальным законом распределения координат. Моделирование векторов с произвольным законом распределения координат.

4. Примеры разработки математических моделей

На выбор студентов предлагается рассмотреть процесс разработки двух моделей (передача информации по подверженному воздействию помех дискретному каналу связи, прогнозирование развития некоторого процесса и др.).

5. Обзорное занятие

Требования к ответам на экзамене. Обзор материала курса

О курсовой работе

Требования к курсовой работе (КР), пример выполнения КР, обзор заданий на КР.

Календарный план, наименование разделов учебного модуля с указанием трудоемкости по видам учебной работы представлены в технологической карте учебного модуля (приложение Б).

4.3 Лабораторный практикум

Темы

- 1 Введение в математическое моделирование.
- 2 Основы моделирования в среде Delphi: выполнение простых опереций.
- 3 Моделирование работы переключателей и динамики в среде Delphi.
- 4 Вывод информации из среды Delphi в буфер ЭВМ.
- 5 Ввод графической информации в среду Delphi.
- 6 Разработка локальной базы данных и работа с ней в среде Delphi.
- 7 Исследование детерминированной модели.
- 8 Моделирование равномерно распределённых случайных величин.
- 9 Анализ двух приложений псевдослучайных последовательностей.
- 10 Моделирование дискретных случайных величин.
- 11 Моделирование непрерывных случайных величин.
- 12 Моделирование и анализ случайных последовательностей.
- 13 Декомпозиция и прогнозирование временных рядов.
- 14 Моделирование случайных векторов.
- 15 Разработка генератора случайных величин с заданным одномерным распределением.
- 16 Разработка и исследование математической модели образования помех в канале связи.
- 17 Моделирование канала связи с помехоустойчивым кодированием.
- 18 Аттестация (зачёт).

4.4 Примеры тем курсовых работ:

Разработка программы-генератора равновероятных псевдослучайных чисел с заданными параметрами. 2. Экспериментальное исследование рекуррентных последовательностей равновероятных случайных символов, генерируемых без использования М-последовательностей. Разработка программы моделирование случайных векторов с заденным двумерным 3. распределением. Разработка локальной базы 8- 10- и 12- разрядных примитивных многочленов для 4 управления моделями систем связи. Моделирование канала связи с обнаружением и с исправлением одной ошибки в при-5 нимаемом коде. Моделирование системы формирования сложного сигнала РЛС и его приёма в условиях 6. наличия помех различного уровня,

4.5 Организация изучения учебного модуля

Изложение лекционного материала даётся в соответствии с активной формой обучения, когда лектор время от времени задаёт студентам вопросы. Первостепенная задача лектора видится в быстром создании контакта с аудиторией. Должна быть создана такая атмосфера, при которой студенты не будут бояться задавать вопросы лектору.

Поскольку материал читается 4-му курсу, то в излагаемый материал включается информация о последних достижениях в области математического моделирования.

Методические рекомендации по организации изучения УМ с учетом использования в учебном процессе активных и интерактивных форм проведения учебных занятий даются в Приложении А.

5 Контроль и оценка качества освоения учебного модуля

Контроль качества освоения студентами УМ и его составляющих осуществляется непрерывно в течение всего периода обучения с использованием балльно-рейтинговой системы (БРС), являющейся обязательной к использованию всеми структурными подразделениями университета.

Для оценки качества освоения модуля используются формы контроля: текущий – регулярно в течение всего семестра; рубежный – на девятой неделе семестра; семестровый – по окончании изучения УМ.

Оценка качества освоения модуля осуществляется с использованием фонда оценочных средств, разработанного для данного модуля, по всем формам контроля в соответствии с положением Минобрнауки от «Об организации учебного процесса по образовательным программам высшего образования» и о «Фонде оценочных средств». Содержание видов контроля и их график отражены в технологической карте учебного модуля (Приложение Б).

6 Учебно-методическое и информационное обеспечение учебного модуля

Учебно-методическое и информационное обеспечение учебного модуля «Математическое моделирование на ЭВМ» представлено **Картой учебно-методического обеспечения** (см. Приложение В).

7 Материально-техническое обеспечение учебного модуля

Лабораторные занятия (36 чисов) проводятся в компьютером классе, оснащённом 10 современными компьютерами (аудитория 3105/2). Все работы двухчасовые и выполняются фронтально. На каждом компьютере имеется программный модуль, позволяющий выполнять 9 лабораторных работ с контролем знаний студентами основ теории по выполняемой работе, а также с анализом качества выполнения двух разделов исследовательского плана. В итоге каждому студенту компьютерная программа выставляет оценку, которая заносится в журнал преподавателя. Остальные лабораторные работы выполняются также фронтально, но без управления указанным модулем.

Приложения:

- А Методические рекомендации по организации изучения учебного модуля.
- Б Технологическая карта.
- B- Карта учебно-методического обеспечения УМ.

Приложение А

Методические рекомендации по организации изучения учебного модуля для преподавателя и для студента

Лекционный материал по разделам дисциплины излагается в основном на основе основных литературных источников, приводимых в табл. 4.1. В качестве дополнительных источников могут быть материалы, полученные из сети Интернет, а также результаты научных разработок кафедры, в том числе — лично преподавателя. Преподавателю рекомендуется сообщать студентам из каких дополнительных источников взят сообщаемый им материал.

Тематика практических и лабораторных занятий должна соответствовать тематике лекционного материала.

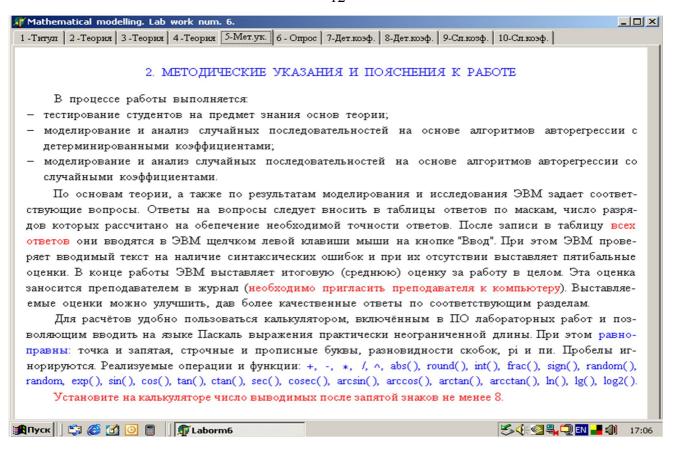
Основной литературой по УМ «Математическое моделирование на ЭВМ» являются следующие издания:

- 1. Математическое моделирование на ЭВМ: Учебное пособие / Б.Ф. Кирьянов; НовГУ им. Ярослава Мудрого.— В. Новгород, 2012.— 143 с.
- 2. Математическое моделирование: Учебное пособие / Б.Ф. Кирьянов; НовГУ им. Ярослава Мудрого. -2006.-35 с.

3.

Таблица 4.1 – Основная и дополнительная учебная литература по разделам модуля

	и признатительных утеоных литература по разделам модули			
Наименован. раздела	Литература к разделам модуля			
0 Введение	0.1 Математическое моделирование на ЭВМ: Учебное пособие / Б.Ф. Кирьянов; НовГУ им. Ярослава Мудрого. – В. Новгород, 2012. – 143 с.			
	0.2 Лоу А.М., Кельтон В.Д. Имитационное моделирование. СПб: Питер, 2004. – 847 с.			
	0.3 Кирьянов Б.Ф. Математическое моделирование в среде Delphi: Монография – М.: РАЕ. 2012. 154 с.			
1 Основы программной реализация моделй на ЭВМ	1.1 Математическое моделирование на ЭВМ: Учебное пособие / Б.Ф. Кирьянов; НовГУ им. Ярослава Мудрого. – В. Новгород, 2012. – 143 с.			
	1.2 Кирьянов Б.Ф. Математическое моделирование в среде Delphi: Монография – М.: РАЕ. 2012. 154 с.			
2 Детерминирован- ные модели	2.1 Математическое моделирование на ЭВМ: Учебное пособие / Б.Ф. Кирьянов; НовГУ им. Ярослава Мудрого. – В. Новгород, 2012. – 143 с.			
	2.2 Математическое моделирование: Учебное пособие / Б.Ф. Кирьянов; НовГУ им. Ярослава Мудрого. — 2006. — 35 с.			
	2.3 Кирьянов Б.Ф. Математическое моделирование в среде Delphi: Монография М.: РАЕ. 2012. 154 с.			


3.1 Общие сведения о стохастических моделях	 3.1.1 Математическое моделирование на ЭВМ: Учебное пособие / Б.Ф. Кирьянов; НовГУ им. Ярослава Мудрого. – В. Новгород, 2012. – 143 с. 3.1.2 Кирьянов Б.Ф. Математическое моделирование в среде Delphi: Монография М.: РАЕ. 2012. 154 с. 3.1.3 Лоу А.М., Кельтон В.Д. Имитационное моделирование. СПб: Питер, 2004. – 847 с. 3.1.4 Математическое моделирование: Учебное пособие / Б.Ф. Кирьянов; НовГУ им. Ярослава Мудрого. – 2006. – 35 с.
3.2 Моделирование равновероятных случайных величин	 3.2.1 Математическое моделирование на ЭВМ: Учебное пособие / Б.Ф. Кирьянов; НовГУ им. Ярослава Мудрого. – В. Новгород, 2012. – 143 с. 3.2.2 Математическое моделирование: Учебное пособие / Б.Ф. Кирьянов; НовГУ им. Ярослава Мудрого. – 2006. – 35 с. 3.3.3 Кирьянов Б.Ф. Математическое моделирование в среде Delphi. М.: РАЕ. 2012. 154 с. 3.3.4 Лоу А.М., Кельтон В.Д. Имитационное моделирование. СПб: Питер, 2004. – 847 с.
3.3. Моделирование случайных событий и дискретных случайных величин	 3.3.1 Математическое моделирование на ЭВМ: Учебное пособие / Б.Ф. Кирьянов; НовГУ им. Ярослава Мудрого. – В. Новгород, 2012. – 143 с. 3.3.2 Математическое моделирование: Учебное пособие / Б.Ф. Кирьянов; НовГУ им. Ярослава Мудрого. – 2006. – 35 с. 3.3.3 Кирьянов Б.Ф. Математическое моделирование в среде Delphi. М.: РАЕ. 2012. 154 с.
3.4. Моделирование непрерывных случайных величин	 3.4.1 Математическое моделирование на ЭВМ: Учебное пособие / Б.Ф. Кирьянов; НовГУ им. Ярослава Мудрого. – В. Новгород, 2012. – 143 с. 3.4.2 Математическое моделирование: Учебное пособие / Б.Ф. Кирьянов; НовГУ им. Ярослава Мудрого. – 2006. – 35 с. 3.4.3 Кирьянов Б.Ф. Математическое моделирование в среде Delphi. М.: РАЕ. 2012. 154 с. 3.4.4 Лоу А.М., Кельтон В.Д. Имитационное моделирование. – СПб: Питер, 2004. – 847 с.
3.5. Моделирование и анализ случайных процессов и случайных последовательностей	 3.5.1 Математическое моделирование на ЭВМ: Учебное пособие / Б.Ф. Кирьянов; НовГУ им. Ярослава Мудрого. – В. Новгород, 2012. – 143 с. 3.5.2 Математическое моделирование: Учебное пособие / Б.Ф. Кирьянов; НовГУ им. Ярослава Мудрого. – 2006. – 35 с. 3.5.3 Кирьянов Б.Ф. Математическое моделирование в среде Delphi. М.: РАЕ. 2012. 154 с.

3.6. Моделирование случайных векторов	3.6.1	Математическое моделирование на ЭВМ: Учебное пособие / Б.Ф. Кирьянов; НовГУ им. Ярослава Мудрого. – В. Новгород, 2012. – 143 с.
en j iumizm zem epez	3.6.2	Кирьянов Б.Ф. Математическое моделирование в среде Delphi. М.: PAE. 2012. 154 с.
	3.6.3	Лоу А.М., Кельтон В.Д. Имитационное моделирование. – СПб: Питер, $2004847~\mathrm{c}.$
4. Примеры разработ-	4.1	Математическое моделирование на ЭВМ: Учебное пособие / Б.Ф. Кирь-
ки математических		янов; НовГУ им. Ярослава Мудрого. – В. Новгород, 2012. – 143 с.
моделей	4.2	Кирьянов Б.Ф. Математическое моделирование в среде Delphi. М.:
		PAE. 2012. 154 c.
	4.3	Лоу А.М., Кельтон В.Д. Имитационное моделирование. – СПб: Питер,
		2004. – 847 c.

Примечание: Основы теории тех разделов лекционного курса, по которым проводятся лабораторные занятия, кратко изложены в учебном пособии: Кирьянов Б.Ф. Математическое моделирование. — Вел. Новгород: НовГУ, 2006. — 36 с. В этом пособии приводятся и упражнения по указанным разделам, рекомендуемые к выполнению на практических занятиях и процессе самостоятельной работы студентов.

Каждая лабораторная работа выполняется фронтально в дисплейном классе под управлением разработанного информационно-управляющего и обучающего программного обеспечения (ПО). Информационная часть ПО содержит описание основ теории, методические указания для студентов и контрольные вопросы по основам теории лабораторных работ, а также задания на исследованиям. Параметры заданий для каждого студента не повторяются, так как они генерируются датчиком случайных величин.

Студентам следует ознакомиться с основами теории и с методическими указаниями к лабораторным работам. Ниже в качестве примера приводятся методические указания к лабораторной работе № 6 (Моделирование и анализ случайных последовательностей, стр. 5).

Разработанная программная часть ПО лабораторных работ выполняет следующие функции:

- 1. Генерирование случайных параметров для контрольных вопросов и для заданий на исследования.
- 2. Генерирование графиков получаемых решений при каждом изменении их параметров.
- 3. Выдачу числовых результатов проводимых исследований.
- 4. Проверку правильности ответов на контрольные вопросы по теории и по получаемым в процессе исследования результатам.
- 5. Оценку качества выполнения исследований.
- 6. Выставление студентам оценок за каждое задание и за работу в целом.

Общая оценка за работу должны быть записана преподавателем в журнале по лабораторным работам.

Студентам рекомендуется записать установленный в дисплейном классе программный продукт на соответствующую переносную память для тренировки в проведении исследований по лабораторным работам и в подготовке ответов на вопросы.

Приложение Б

Технологическая карта

учебного модуля «Математическое моделирование на ЭВМ» семестр 7-й, ЗЕТ____, вид аттестации экз, акад. часов_216, баллов рейтинга 300

	No	Γ	рудо	емкос	ть, ак.ч	ıac	Форма текущего	Максим.
№ и наименование раздела учебного модуля, КП/КР		Ауд	иторн	ные за	. RИТКН	~~~	контроля успев.	кол-во
		ЛЕК	ПЗ	ЛР	ACPC	CPC	(в соотв. с пас- портом ФОС)	баллов рейтинга
УЭМ1 Математическое моделирование на ЭВМ	стра 7	36	18	36	18	126	Тесты, собесед	300
1.0 Введение	1	2	1	2	0,9		Собеседование	-
1.1 Основы программной реализация моделей на ЭВМ	2	2	2	10	0,9		+ Тест	30
1.2 Детерминированные модели	2	2	5	4	1,1		Тесты со	-
1.2.1. Основные моделируемые структуры. Цифровые автоматы	3-4	2	2	2	1,1		случайными	10
1.2.2. Математический аппарат, реализуемый в линейных детерминирован-							параметрами,	-
ных моделях, и основные задачи моделирования на их основе	5	2	1	-	0,9		генерируемые	10
1.2.3. Пример подготовки математического описания системы для её модели-							ЭВМ, +	-
рования на компьютере	6	2	1	-	1,1		собеседование	10
1.2.4. Линейные модулярные модели	8	2	1	2	0,9		Тесты со	10
1.3 Стохастические модели	8	2	8	16	1,1		случайными	-
1.3.1 Общие сведения о стохастических моделях	8-9	2	1	-	0,9		параметрами,	10
1.3.2 Моделирование равновероятных случайных величин	10	2	1	2	1,1		генерируемые	20
1.3.3 Моделирование случайных событий и дискретных случайных величин	11	2	1	2	0,9		ЭВМ, +	10
1.3.4 Моделирование непрерывных случайных величин	12	2	1	4	1,1		собеседование	20
1.3.5 Моделирование и анализ случайных процессов и случайных последова-					0,9			-
тельностей	14-15	4	1	2	1,1			20
1.3.6 Моделирование случайных векторов	15	2	2	2	0,9		Собеседование	20
1.3.7 Моделирование процессов передачи информации по каналам связи	16-17	4	1	4	1,8		Собеседование	15
1.4 Примеры разработки моделей передачи информации по каналам связи	18	2	2	4	0,9		Собеседование	15
Рубежная аттестация							Всего ач:	200
Курсовая работа		_						50
Семестровый контроль (экзамен)								50
Итого: 90 а.ч.		36	18	36	18			300

Критерии оценки качества освоения студентами дисциплины (в соответствии с Положением «Об организации учебного процесса по образовательным программам высшего образования».:

оценка «удовлетворительно» – 150 – 199 балла

- оценка «хорошо» 200-249 баллов
- оценка «отлично»с250-300 баллов Т

Приложение В

Карта учебно-методического обеспечения

Учебного модуля Математическое моделирование на ЭВМ
Направление (специальность) Прикладная математика и информатика
Формы обучения очная
Курс <u>4</u> Семестр <u>7</u>
Часов: всего <u>90</u> , лекций <u>36</u> , практ. зан. <u>18</u> , лаб. раб. <u>36</u> , СРС и виды индивиду-
альной работы (курсовая работа, КП) <u>126</u>
Обеспечивающая кафедра <u>Кафедра прикладной математики и информатики</u>

Таблица 1- Обеспечение учебного модуля учебными изданиями

Библиографическое описание* издания (автор, наименование, вид, место и год издания, кол. стр.)	Кол. экз. в библ. НовГУ	Наличие в ЭБС
Учебники и учебные пособия		
1 Математическое моделирование на ЭВМ: Учебное пособие / Б.Ф. Кирьянов; НовГУ им. Ярослава Мудрого. – В. Новгород, 2012. – 143 с.	42	НовГУ. Биб- лиотех
2 Математическое моделирование: Учебное пособие / Б.Ф. Кирьянов; НовГУ им. Ярослава Мудрого. – 2006. – 35 с.	15	НовГУ. Библиотех
Учебно-методические издания		
1. Положение о курсовых работах для студентов направления 010400 и специальности 010501 «Прикладная математика и информатика». НовГУ. 2006. 6 с./ сост. Кирьянов Б.Ф.		НовГУ. Библиотех

Таблица 2 – Информационное обеспечение учебного модуля

Название программного продукта, интернет-ресурса	Электронный адрес	Примечание
1 Рабочая программа УМ «Математическое моделирование на		
ЭВМ» / Сост. Кирьянов Б.Ф.; НовГУ им. Ярослава Мудрого	www.novsu.ru/	НовГУ. Биб-
В. Новгород, 2012. – 3 с. – Режим доступа:	doc/study/kbf/	лиотех.
http://www.novsu.ru/doc/study/kbf/		
2 Математическое моделирование на ЭВМ. Задания на курсовую	www.novsu.ru/	
работу / Сост. Кирьянов Б.Ф.; НовГУ им. Ярослава Мудрого	doc/study/kbf/	
В. Новгород, 2012. – 3 с. – Режим доступа:		
http://www.novsu.ru/doc/study/kbf/		
3 Математическое моделирование на ЭВМ. Методические	www.novsu.ru/	
указания к выполнению курсовых работ / Б.Ф. Кирьянов; НовГУ	doc/study/kbf/	
им. Ярослава Мудрого. – В. Новгород, 2012. – 6 с. Режим досту-		
па: http://www.novsu.ru/doc/study/kbf/		
4 Основы работы в среде Delphi./ Сост. Кирьянов Б.Ф.; НовГУ	www.novsu.ru/	НовГУ. Биб-
им. Ярослава Мудрого. – В. Новгород, 2012. – 33 с. – Режим до-	doc/study/kbf/	
ступа: http://www.novsu.ru/doc/study/kbf/		лиотех
5 Математическое моделирование на ЭВМ. Экзаменационные	www.novsu.ru/	
вопросы / Сост. Кирьянов Б.Ф.; НовГУ им. Ярослава Мудрого	doc/study/kbf/	
В. Новгород, 2012. – 2 с. – Режим доступа:		
http://www.novsu.ru/doc/study/kbf/		

Приложение Е

(обязательное)

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Новгородский государственный университет имени Ярослава Мудрого» Институт электронных и информационных систем

Кафедра прикладной математики и информатики

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВНИЕ НА ЭВМ

Модуль для направления подготовки 010400.68 – прикладная математика и информатика

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

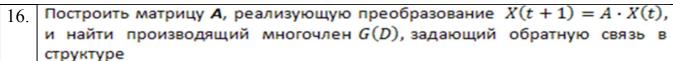
СОГЛАСОВАНО	Разработал		
Заведующий выпускающей кафедрой	профессор кафедры КПМИБ.Ф. Кирьянов2014 г.		
A.В. Колногоров 2014 г.			
Принято на заседании Ученого совета ИЭИС 2014 г. Протокол №	Принято на заседании КПМИ 2014 г. Протокол №		
Зам. директора института	Заведующий кафедрой КПМИ		
А.В. Колногоров	А.В. Колногоров		

Паспорт фонда оценочных средств

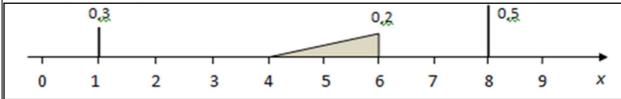
по модулю Математическое моделирование на ЭВМ для направления подготовки 010400.62 – Прикладная математика и информатика

№ п/п	Модуль, раздел	Контролиру- емые	ФОС		
	(в соответствии с РП)	компетенции	Вид оценочно-	Количество0ва-	
		(или их части)	го средства	0риантов0заданий0	
1	Раздел 1. Детерминированные	OK-15, OK-	Тесты, генери-	Неограниченное	
_	модели	16, ПК-3	руемые ЭВМ	(случайные парам.)	
2	Раздел02.2.0Стохастические мо-	OK-15, OK-	Тесты, генери-	Неограниченное	
	дели: Моделирование равномер-	16,	руемые ЭВМ	(случайные парам.)	
	но распределённых случайных	ПК-3, ПК-6			
	величин				
3	Раздел 2.2. Стохастические	ПК-3, ПК-6,	Тесты, генери-	Неограниченное	
	модели: Анализ двух приложе-	ПРК-2	руемые ЭВМ	(случайные парам.)	
	ний псевдослучайных последо-				
	вательностей				
4	Раздел 2.3. Стохастические	ПК-3, ПК-6,	Тесты, генери-	Неограниченное	
	модели: Моделирование		руемые ЭВМ	(случайные парам.)	
	дискретных случайных величин				
5	Раздел02.4.0Стохастические	ПК-3, ПК-6,	Тесты, генери-	Неограниченное	
	модели: Моделирование непре-		руемые ЭВМ	(случайные парам.)	
	рывных случайных величин				
6	Раздел 2.5. Стохастические	ПК-3, ПК-6,	Тесты, генери-	Неограниченное	
	модели: Моделирование и ана-		руемые ЭВМ	(случайные парам.)	
	лиз случайных последователь-				
	ностей				
7	Раздел 2.5. Стохастические	ПК-3, ПК-6,	Тесты, генери-	Неограниченное	
	модели: Декомпозиция и про-	ПРК-2	руемые ЭВМ	(случайные парам.)	
	гнозирование временных рядов				
8	Раздел 2.6. Моделирование	ПК-3, ПК-6,	Тесты, генери-	Неограниченное	
	случайных векторов	ПРК-2	руемые ЭВМ	(случайные парам.)	
9	Раздел 3. Примеры разработки	OK-15, OK-16,	Тесты, генери-	Неограниченное	
	математических моделей	ПК-3, ПК-6,	руемые ЭВМ	(случайные парам.)	
		ПРК-2			
2-8	Разделы 2-3.	OK-15, OK-16,	Курсовая работа	22	
		ПК-3, ПК-6,			
		ПРК-2			
1-9	Аттестация	OK-15, OK-16,	Комплект экза-	22	
		ПК-3, ПК-6,	менационных		
		ПРК-2	билетов		

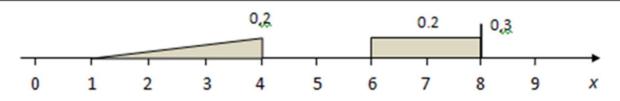
Информационное обеспечение фонда оценочных средств

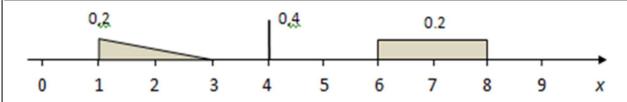

Раздел I. Теоретические вопросов экзаменационных билетов

1.	Цифровые автоматы и их математическое описание.
2.	Модулярные структуры и их элементы.
3.	Периоды состояний модулярных структур. Производящие многочлены.
4.	Матрицы над полем $GF(2)$ и их применение для описания модулярных структур.
5.	Физические датчики случайностей. Классификация методов имитации равновероятных случайных величин (чисел).
6.	Генераторы псевдослучайных кодов (ГПСК) на основе регистров сдвига и их характеристики.
7.	Генераторы случайных кодов на основе ГПСК и датчиков случайных двоичных символов.
8.	Физические датчики случайностей. Классификация методов имитации равновероятных случайных величин (чисел).
9.	Общий метод моделирования дискретных случайных величин и случайных событий.
10.	Моделирование ДСВ с биномиальным распределением.
11.	Метод обратной функции моделирования НСВ.
12.	Метод суперпозиции моделирования HCB <mark>.</mark>
13.	Моделирования НСВ методом отбора (методом Неймана).
14.	Моделирование непрерывно-дискретных случайных величин.
15 <mark>.</mark>	Моделирование нормально распределённых случайных величин.
16.	Моделирование НСВ с усечёнными законами распределения.
17.	Общие сведения о моделирования случайных последовательностей с заданными корреляционными характеристиками.
18.	Компоненты временных рядов. Общие сведения о декомпозиции и моделировании временных рядов.
19.	Прогнозирование временных рядов с "нетипичными" выбросами.
20.	Прогнозирование временных рядов.
21.	Моделирование нормально распределённых случайных векторов.
22.	Общие сведения о пакетах прикладных программ для имитационного моделирования систем.


Раздел II. Задачи экзаменационных билетов

1.	Составить алгоритм авторегрессии, моделирующий случайную последовательность $\{Y\}$				
	при $R(1) = 0.4$, $R(2) = 0.15$, $R(3) = 0$, $f(x) = 0.5$, $x \in [0, 2]$. Определить значения				
	коэффициентов алгоритма, величин $R(4)$ и $M(y)$.				
2.	Составить алгоритм авторегрессии, моделирующий случайную последовательность $\{Y\}$				
	при $R(1) = 0.6$, $R(2) = 0.3$, $R(3) = 0.1$, $f(x) = 2$, $x \in [0, 0.5]$.				
	Определить значения коэффициентов алгоритма, величин $R(4)$ и $M(y)$.				
3.	Составить алгоритм авторегрессии, моделирующий случайную последовательность $\{Y\}$				
	при $R(1) = 0.5$, $R(2) = 0.2$, $R(3) = 0.1$, $f(x) = 1$, $x \in [1, 2]$.				
	Определить значения коэффициентов алгоритма, величин $R(4)$ и $M(y)$.				


4.	Составить алгоритм авторегрессии, моделирующий случайную последовательность $\{Y\}$					
	при $R(1) = 0.4$, $R(2) = 0.1$, $R(3) = -0.1$, $f(x) = 0.2$, $x \in [1, 1.5]$.					
	Определить значения коэффициентов алгоритма, величин $R(4)$ и $M(y)$.					
5.	Составить алгоритм авторегрессии, моделирующий случайную последовательность $\{Y\}$					
	при $R(1) = 0.3$, $R(2) = 0$, $R(3) = -0.2$, $f(x) = 2$, $x \in [-3, 2]$.					
	Определить значения коэффициентов алгоритма, величин $R(4)$ и $M(y)$.					
6.	Составить алгоритм авторегрессии, моделирующий случайную последовательность $\{Y\}$					
	при $R(1) = 0.2$, $R(2) = -0.2$, $R(3) = -0.1$, $f(x) = 4$, $x \in [2, 2.25]$.					
	Определить значения коэффициентов алгоритма, величин $R(4)$ и $M(y)$.					
7.	Построить алгоритм моделирования $HCB X$ с законом распределения					
	$F(x) = e^{-3x}$ при $x \in [0, \infty)$.					
8.	Построить алгоритм моделирования $HCB X$ с законом распределения					
	$F(x) = \ln x \text{ при } x \in [1, e].$					
9.	Построить алгоритм моделирования $HCB X$ с законом распределения					
	$F(x) = 0.5 \operatorname{tg} \frac{\pi}{4} x + \sin \frac{\pi}{6} x$ при $x \in [0, 11].$					
10.	Построить алгоритм моделирования НСВ X с законом распределения					
10.	$f(x) = 0.5\pi x \cdot \cos 0.5\pi x + \sin 0.5\pi x$ при $x \in [0, 11]$.					
11.	Построить алгоритм моделирования $HCB X$ с законом распределения					
11.	$f(x) = \frac{1}{x} \text{ при } x \in [1, 1e].$					
10	λ					
12.	Построить алгоритм моделирования НСВ Х с законом распределения					
	$f(x) = -\frac{1}{x}$ при $x \in [-1, 1-2]$.					
13.	Построить матрицу A , реализующую преобразование $X(t+1) = A \cdot X(t)$,					
	и найти производящий многочлен $G(D)$, задающий обратную связь в					
	структуре					
	1					
1.4						
14.	Построить матрицу A , реализующую преобразование $X(t+1) = A \cdot X(t)$,					
	и найти производящий многочлен $G(D)$, задающий обратную связь в					
	структуре					
1.5	HOCTOUTS MATRICINA A DOGGLASSING PROCESSING $V(t \pm 1) = A \cdot V(t)$					
15.	Построить матрицу A , реализующую преобразование $X(t+1) = A \cdot X(t)$, и найти производящий многочлен $G(D)$, задающий обратную связь в					
	структуре					
	 					
L						


- 17. Построить алгоритм и структуру генератора М-1- последовательности.
- 18. Построить алгоритм моделирования ДСВ X, принимающей значения натурального ряда чисел с вероятностью 0.5^n , где n номер числа.
- 19. Построить график функции распределения и построить алгоритм моделирования дискретно-непрерывной случайной величины X:

 Построить график функции распределения и написать алгоритм моделирования дискретно-непрерывной случайной величины X:

 Построить график функции распределения и написать алгоритм моделирования дискретно-непрерывной случайной величины X:

22. Построить график функции распределения и построить алгоритм моделирования дискретно-непрерывной случайной величины X с функцией плотности

$$f(x) = 0.1 \cdot (x - 1)$$
 при $x \in [1, 3)$; $f(x) = 0.1 \cdot (5 - x]$ при $x \in (3, 5]$; $f(x) = 0.7$ при $x = 3$; $f(x) = 0$ в остальных случаях.

Примечание. Приводимые в экзаменационных билетах числовые значения параметров рассматриваемых элементов ежегодно корректируются

Раздел III. Пример комплекта заданий на курсовые работы

№	Название и содержание задания	Основная литература		
1	Исследование поведения модели динамической системы $Y = f(X)$: $\begin{cases} \frac{dx}{dt} = axy + \sin t, \\ \frac{dy}{dt} = bxe^{-t} + x + cye^{-2t} \end{cases}$ при $a, b, c \in (0, 1]$.	Кирьянов Б.Ф. Математическое моделирование: Учеб. пособие. – Вел. Новгород: НовГУ, 2006. – 36 с.		
2		Под ред. Ю.Д. Максимова. Вероятностные разделы математики. – СПб: «Иван Фёдоров», 2001.		
3	Построение 8-разрядного генератора равновероятных случайных величин. Базовый регистр — 15-разрядный. Интервалы повторения X_i генератора не менее 500. Определить $R(\tau)$ чисел X для $\tau \in [1, 5]$.			
4	Построение и исследование 10-разрядного генератора равновероятных случайных чисел на основе М-1-последовательности.	Кирьянов Б.Ф. Математическое моделирование на ЭВМ: Учеб. пособие: НовГУ, 2012. 148 с.		
5		Под ред. Ю.Д. Максимова. Вероятностные разделы математики. – СПб: «Иван Фёдоров», 2001.		
6	Моделирование трёхмерного равномерного распределения при $x \in [0, 2]$, $y \in [0, 0,5]$, $z \in [0, 2]$, $R_{xy} = 0,2$, $R_{xz} = 0,2$ и $R_{yz} = 0,4$.	Кирьянов Б.Ф. Математическое моделирование на ЭВМ: Учеб. пособие: НовГУ, 2012. 148 с.		
7	Разработка генератора, выдающего одновре-менно 3 четырёхразрядных случайных числа с равномерным распределением на основе одной М-последовательности. Обеспечить период $T \ge 60000$ шагов и некоррелированность генерируемых чисел (коэффициенты взаимной корреляции неболее 0,0001).	Кирьянов Б.Ф. Математическое моделирование на ЭВМ: Учеб. пособие: НовГУ, 2012. 148 с.		
8	сложного сигнала РЛС и его приёма в	Кирьянов Б.Ф. Математическое моделирование на ЭВМ: Учебное пособие: НовГУ, 2012. 148 с		

9	Разработка программы определения примитивных многочленов 5-ю и более единицами в старших разрядах. Разрядность многочленов: $n \in [7, 15]$.	Кирьянов Б.Ф. Математическое моделирование на ЭВМ: Учеб. пособие: НовГУ, 2012. 148 с.
10	Моделирование генератора равновероятных 10-разрядных чисел на основе сложения по модулю два М- и М-1-последовательностей. Исследовать характеристики получаемой последовательности.	Кирьянов Б.Ф. Математическое моделирование на ЭВМ: Учеб. пособие: НовГУ, 2012. 148 с.
11	Моделирование случайных величин с функцией плотности типа $x\sin x$: $f(x) = M \cdot \left(\frac{x-a}{b-a}\right)^m \cdot \left[1+\sin\left(\frac{2\pi(x-a)}{b-a}\right) - \frac{\pi}{2}\right]^n$ при $x \in [a,b]$ и $f(x) = 0$ при $x \notin [a,b]$. Определить значения M для случая $a=3,\ b=20,\ m=0,2,4,\ n=1,2.$ Построить графики распределений, разработать программу моделирования случайных величин X .	Кирьянов Б.Ф. Математическое моделирование на ЭВМ: Учеб. пособие: НовГУ, 2012. 148 с.
12	Построение генератора дискретной случайной величины $X = \{x_0, x_1, \dots x_n\}$, где $x_i = 2 + i^2$, $n = 10$. Закон распределения ДСВ X — биномиальный с параметром	Кирьянов Б.Ф. Математическое моделирование на ЭВМ: Учеб. пособие: НовГУ, 2012. 148 с.
13	Построение генератора дискретной случайной величины $X = \{x_0, x_1, \dots x_n\}$, где $x_i = -1 - 8i + i^2$, $n = 9$. Закон распределения ДСВ X – биномиальный с параметром n .	Кирьянов Б.Ф. Математическое моделирование на ЭВМ: Учеб. пособие: НовГУ, 2012. 148 с.
14	Разработка генератора случайной величины, принимающей значения из $\{1, 2, 4, 8, 16, 32\}$ и подчиняющейся биномиальному распределением с задаваемой вероятностью p .	Кирьянов Б.Ф. Математическое моделирование на ЭВМ: Учеб. пособие: НовГУ, 2012. 148 с.
15	Разработка и исследование 16-разряд-ного генератора случайных чисел на основе линейного смешанного преобразования (без использования М-последовательности).	Кирьянов Б.Ф. Математическое моделирование на ЭВМ: Учеб. пособие: НовГУ, 2012. 148 с.

16	Разработка локальной компьютерной базы примитивных 8- 10- и 12- разрядных многочленов	Кирьянов Б.Ф. Учебное пособие «Основы работы в среде Delph» // НовГУ, 2012. 33 с.
17	Разработка локальной базы оценок студентов на лабораторных работах.	Кирьянов Б.Ф. Учебное пособие «Основы работы в среде Delph» // НовГУ, 2012. 33 с.
18	Разработка и исследование модели помех в канале связи.	Кирьянов Б.Ф. Математическое моделирование на ЭВМ: Учебное пособие: НовГУ, 2012. 148 с.
19	Разработка и исследование генератора 5-разрядных равновероятных случайной кодов на основе физических датчиков случайности с $P(X=1) = 0,6$. Обеспечить $P[X_i] \in [0,499,\ 0,501]$.	Кирьянов Б.Ф. Математическое моделирование на ЭВМ: Учебное пособие: НовГУ, 2012. 148 с.
20	Моделирование канала связи с исправлением одной ошибки в слове.	Кирьянов Б.Ф. Основы информатики.: Уч. пособие.: НовГУ (Эл. ресурс). 2012. 169 с.
21	Моделирование канала связи с исправлением двух ошибок в слове.	Кирьянов Б.Ф. Основы информатики.: Уч. пособие.: НовГУ (Эл. ресурс). 2012. 169 с.
22	Статистический анализатор помех в канале связи.	Кирьянов Б.Ф. Математическое моделирование на ЭВМ: Учебное пособие: НовГУ, 2012. 148 с.
23	Тема по предложению студента.	
24	Тема по предложению студента.	

Оценки за задания по разделам $I-III\;$ определяются преподавателем по качеству ответов на вопросы и качеству выполнения заданий

Раздел IV. Задания по лабораторным работам.

№	Наименование работы	Основная литература	
1	Ознакомление со средой программирования Delphi.	Кирьянов Б.Ф. Учебное пособие	
	Выполнение простых операций.	«Основы работы в среде Delph» //	
2	Построение графиков в среде Delphi.	НовГУ (электронный ресурс). 2012.	
3	Вывод информации из среды Delphi в буфер ЭВМ.	33 c.	
4	Введение в математическое моделирование.		
5	Исследование детерминированной модели с обрат-		
3	ной связью.		
6	Моделирование равномерно распределённых слу-	Кирьянов Б.Ф. Математическое	
	чайных величин.	моделирование на ЭВМ: Учебное	
7	Исследование двух приложений псевдослучайных	пособие: НовГУ, 2012. 148 с.	
,	последовательностей.		
8	Моделирование дискретных случайных величин.		
9	Моделирование непрерывных случайных величин.		

10	Моделирование динамики в среде Delphi.	Кирьянов Б.Ф. Учебное пособие	
11	Переключение моделируемых процессов в среде	«Основы работы в среде Delph» //	
12	Ввод изображений в среду Delphi.	НовГУ (электронный ресурс). 2012.	
13	Моделирование и анализ случайных последовательностей.	Кирьянов Б.Ф. Математическое	
14	Декомпозиция и прогнозирование временных рядов.	моделирование на ЭВМ: Учебное пособие: НовГУ, 2012. 148 с.	
15	Моделирование работы канала связи.	Посоонс. Пові 3, 2012. 146 С.	
16	Построение локальной базы данных в среде Delphi и	Кирьянов Б.Ф. Учебное пособие	
	работа с ней.	«Основы работы в среде Delph» //	
17	Выполнение контрольных заданий в среде Delphi.	НовГУ (электронный ресурс). 2012.	
18	Зачетная работа по ММ на ЭВМ.		

Оценки по лабораторным работам выставляются ЭВМ по числу правильных ответов и студентов (см. раздел V)..

Раздел V. Характеристика оценочных средств

V.1. Лабораторные работы

Каждая лабораторная работа представляет собой небольшое научное исследование, перед выполнением которого студент опрашивается копьютером на предмет знания основ теории, используемой в рассматриваеми задаче. Тематика лабораторных работ соответствует темам лекционного материала.

Таким образом, компьютерный контроль знаний и степени готовности студентов к самостоятельной исследовательской работе является текущим контролем в их подготовке к будущей самостоятельной творческой работе. Этот контроль представляет собой тестировпание знаний и умений студентов, выполняемое разработанными компьютерными программами.

На каждой лабораторной работе студенты тестируются трижды: по знанию теоретитеского материала, на котором основаны проводимые исследования, и дважды по качеству полученным в работе результатам анализа (исследования) друх заданий. Каждый такой тест содержит 4 вопроса. При этам параметры вопросов являются случайными. Вероятнсть того, что при фронтальной реботе студентов значение какого-либо параметра в некотором вопросе в двух компьютерах совпадёт обычно равна 0,0001.

На выполнение лабораторной работы отводится не более 1 часа 50 минут.

По полученным ответам ЭВМ выставляет следующий оценочный балл за каждое из трёх указанных заданий: 5 – за 4 правильных ответа, 4 – за 3 правильных ответа, 3 – за 2 правильных ответа, 2 – за 1 правильный ответ и 1 – за 0 правильных ответов. В конце лабораторной работы по результатам трёх тестов ЭВМ выставляет средний балл (с точностью до 0,1, который преподавателем записывается в журнал успеваемости (ведется разработка электронного журнала с автоматической записью в него оценок студентов).

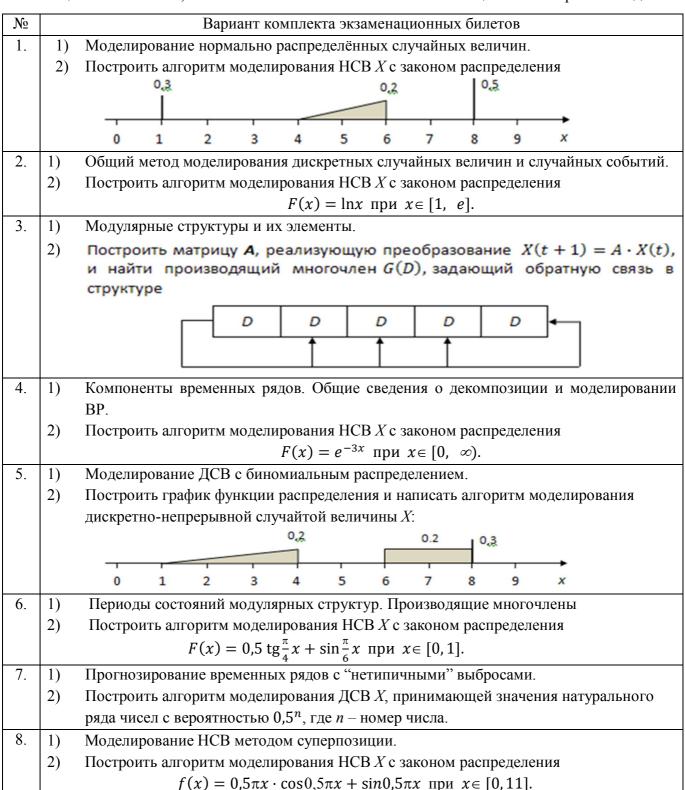
На стр. 26 в качестве примера приведена последняя, 10-я страница лаборатовной работы № 6 «Моделирование непрерывных случайных величин» с заданными студентам заданиями, с видом таблицы ответов студентов и с видом итоговой таблицы результатов работы студента.

По отдельным лабораторным работам, по которым программное обеспечение ещё не разработано, оценка за лабораторную работу выставляется преподавателем по итогам собеседования в соотвтствии с указанными выше критериями.

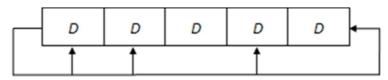
V.II. Курсовая работа

Комплекты заданий на курсовые работы (КР) ежнгодно корректируются. Задания отражают творческий характер предлагаемых студентам исследований. Защита КР просходит в виде доклада с экспозицией слайдов в дисплейнм классе. При этом все студенты могут задавать вопросы докладчику.

Оценка за курсовую работу может определяться как преподавателем, так и комиссией. Критерии оценок, выставляемых студентам за выполненную KP:

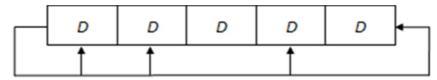

- отлично за высококачественное выполнение задания на КР и правильные ответы на его защите.
- **хорошо** за достаточно качественное выполнение задания на КР и в целом правильные ответы по выполненному заданию;
- удовлетворительно в случае недостаточно качественное выполнение задания на КР;
- **неудовлетворительно** за серьёзные ошибки при выполнении КР или в основном неправильные о веты по существу этой работы.

Лучшие доклады студентов по KP выставляются на студенчекую начную конференцию института. Лучшие доклады на этой конференции публикуются в ежегодном сборнике студенческих научных работ.


V.III. Экзамен

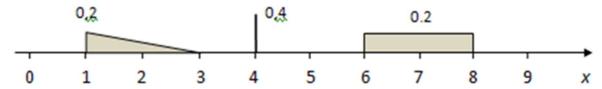
Экзамен принимаются преподавателем по экзаменационным билетам. В каждом билете содержатся вопрос по теоретическому материалу и задача. На подготовку студента к ответу отводистя не боболее одного часа. В случае необходимости при ответе студента ему могут быть заданы дополнительные вопросы.

Экзаменационные билеты ежегодно корректируются. Ниже приведён пример комплекта 18-ти экзаменационных билетов, скомпанованных на основе базы экзаменационных вопросов и задач.


- 9. 1) Генераторы случайных кодов на основе ГПСК и датчиков случайных двоичных символов.
 - 2) Построить матрицу A, реализующую преобразование $X(t+1) = A \cdot X(t)$, и найти производящий многочлен G(D), задающий обратную связь в структуре

- 10. 1) Метод суперпозиции моделирования НСВ.
 - 2) Построить алгоритм моделирования HCB X с законом распределения

$$f(x) = \frac{1}{x}$$
 при $x \in [1, 1e]$.


- 11. 1) Моделирования НСВ методом отбора (методом Неймана).
 - 2) Составить алгоритм авторегрессии, моделирующий случайную последовательность $\{Y\}$ при R(1) = 0,4, R(2) = 0,15, R(3) = 0, f(x) = 0,5, $x \in [0, 2]$. Определить значения коэффициентов алгоритма, величин R(4) и M(y).
- 12. 1) Физические датчики случайностей. Классификация методов имитации равновероятных случайных величин (чисел).
 - 2) Составить алгоритм авторегрессии, моделирующий случайную последовательность $\{Y\}$ при R(1) = 0.6, R(2) = 0.3, R(3) = 0.1, f(x) = 2, $x \in [0, 0.5]$. Определить значения коэффициентов алгоритма, величин R(4) и M(y).
- 13. 1) Моделирование НСВ с усечёнными законами распределения.
 - 2) Построить матрицу A, реализующую преобразование $X(t+1) = A \cdot X(t)$, и найти производящий многочлен G(D), задающий обратную связь в структуре

- 14. 1) Прогнозирование временных рядов.
 - 2) Построить алгоритм моделирования НСВ X с законом распределения

$$f(x) = -\frac{1}{x}$$
 при $x \in [-1, 1-2].$

- 1) Моделирование непрерывно-дискретных случайных величин.
- 15. 2) Построить график функции распределения и составить алгоритм моделирования дискретно-непрерывной случайной величины X::

- 1) Матрицы над полем GF(2) и их применение для описания модулярных структур.
- 16. 2) Составить алгоритм авторегрессии, моделирующий случайную последовательность $\{Y\}$ при $R(1)=0,2,\ R(2)=-0,2,\ R(3)=-0,1,\ f(x)=4,\ x\in[2,\ 2,25].$ Определить значения коэффициентов алгоритма, величин R(4) и M(y).

Критерии выставления экзаменационных оценок:

- отлично за полный и правильный ответ;
- **хорошо** за относительно полный и правильный ответ на экзамене, за достаточно качественное выполнение задания на курсовую работу и в целом правильные ответы по выполненному заданию;
- **удовлетворительно** за довольно неполный ответ или в случае неверного утверждения или ошибочного результата решения задачи на экзамене, а также в случае некачественном выполнении задания на курсовую работу;
- **неудовлетворительно** за в основном неверные ответы на экзамене и серьёзные ошибки при выполнении курсовой работы или в основном неправильные ответы по существу этой работы.

По полученным ответам ЭВМ выставляет следующий оценочный балл за каждое из трёх указанных заданий: 5 – за 4 правильных ответа, 4 – за 3 правильных ответа, 3 – за 2 правильных ответа, 2 – за 1 правильный ответ и 1 – за 0 правильных ответов. В конце лабораторной работы по результатам трёх тестов ЭВМ выставляет средний балл (с точностью до 0,1, который преподавателем записывается в журнал успеваемости (ведется разработка электронного журнала с автоматической записью в него оценок студентов).

По лабораторным работам, по которым описанное программное обеспечение ещё не создано, проводится собеседование по всем разделам работы и определяются указанные выше баллы за работу.

Доступ к элементам ФОС

Наименование элемента ФОС	Электронный адрес	Примечание
1. Экзаменационные вопросы и задачи	www.novsu.ru/doc/study/kbf/	_
2. Задания на курсовую работу	www.novsu.ru/doc/study/kbf/	_
3. Лабораторные работы, задания и вопросы тестирования, баллы за работу.	_	Дисплейный класс НовГУ, ауд. 3105/2

Действител	ьно для учебн	ого года	/		
Зав. кафед	•	подпись	_ <u>А.В. Колног</u> И.О.Фамилия	<u>горов</u>	
			14 г.		
СОГЛАСОВАНО:	НБ НовГУ				
		должност	Ь	подпись	расшифровка