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Математика в таблицах содержит материалы на английском языке к занятиям по основам математического 

анализа, одного из главных и трудных разделов высшей математики. Пособие может быть полезно как 

преподавателям, читающим соответствующий курс лекций, так и студентам, изучающим основы 

математического анализа (темы – производные высших порядков, приложения производной,  

неопределенный интеграл). Использование этих материалов позволит сделать преподавание основ 

указанного раздела более доступным и наглядным. Поскольку таблицы представлены на английском языке, 

то они могут быть использованы преподавателями, обучающими студентов-математиков английскому 

языку, а также их учениками. Пособие предназначено прежде всего для преподавателей и студентов 

высших учебных заведений, хотя отдельные его части можно применять в работе с учениками в классах с 

углубленным изучением математики.



2.6. Higher-order derivatives
Higher derivatives are the functions obtained by repeatedly differentiating 

a function y  = f  (x).

If f ′ is differentiable, the second derivative, denoted f ′′ (read “f double prime”), is the 

derivative of f ′:
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d
xf  The second derivative is the rate of change of  f ′ (x)

• The population P (t) of Sweden has increased every 
year for more than 100 years (therefore, the first 
derivative P′ (t) is positive).

• Table shows that the rate of yearly increase 
declined dramatically in the years 1993–1997.

• So although P′ (t) was still positive in these years, 
P′ (t) decreased and therefore the second derivative 

P ” (t)  was negative in the period 1993–1997.



2.6. Higher-order derivatives
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2.6. Higher-order derivatives
Can we visualize the rate represented by a second derivative?



2.6. Higher-order derivatives
If s = s (t) is the position function of an object that moves in a straight line, we know

that its first derivative represents the instantaneous velocity of the object as a function of time:

)()()( ts
dt

ds
tstv 

The instantaneous rate of change of velocity with respect to time is called the acceleration

of the object:
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The third derivative of the position function is the derivative of the acceleration function and 

is called the jerk:
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The jerk is the rate of change of acceleration. It is aptly named because a large jerk
means a sudden change in acceleration, which causes an abrupt movement in a vehicle.



2.6. Higher-order derivatives

Position function                               Velocity function                          Acceleration function

Height and velocity  functions



2.7. Implicit differentiation
The functions that we have met so far 

can be described by expressing one 

variable explicitly in terms of another 

variable, in general,  y = f (x). Some 

functions, however, are defined 

implicitly by a relation between x and y.
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,633 xyyx When we say that is a function defined implicitly by equation                             we mean that 

the equation                                           is true for all values of x in the domain of  f. )(6)]([ 33 xxfxfx 

The folium of Descartes Graphs of three functions defined by the folium of Descartes



• We don’t need to solve an equation for  y  in terms of  x in order to find the 
derivative of  y. We can use the method of implicit differentiation. 

• This consists of differentiating both sides of the equation with respect to x and 
then solving the resulting equation for y′. 

• Here it is always assumed that the given equation determines y implicitly as a 
differentiable function of x so that the method of implicit differentiation can be 
applied.

Algorithm: 

• Implicit differentiation is used to compute dy/dx when x and y are related by an 
equation.

• Step 1. Take the derivative of both sides of the equation with respect to x.

• Step 2. Solve for y′ by collecting the terms involving y′ on one side and the 
remaining terms on the other side of the equation.

• Remember to include the factor dy/dx when differentiating expressions involving 
y with respect to x. For instance,

2.7. Implicit differentiation
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2.7. Implicit differentiation

a fat circle

astroidcardioid



2.9. Differentials and approximations  

• P (x, f (x)), Q (x+Δx, f (x+ Δx))

• dx = Δx,

• the slope of the tangent line PR is the derivative f ′ (x)

• the directed distance from S to R is  

• dy represents the amount that the tangent line rises or 

falls; Δy represents the amount that the curve rises or 

falls when x changes by an amount dx.
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Def. Differentials
• Let y = f (x) be a differentiable function of the independent variable x. 

• Δx is an arbitrary increment in the independent variable x.

• dx, called the differential of the independent variable x, is equal to Δx.

• Δy is the actual change in the variable y as x changes from x to x + Δx; that is,

• dy, called the differential of the independent variable y, is defined by 
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Differential Rule
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2.9. Differentials and approximations  
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- a symbol for the derivative

- a symbol for the differential
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2.9. Differentials and approximations  
Suppose that y = f (x) . An increment Δx produces a corresponding increment Δy in y, which 

can be approximated by dy. Thus, f (x + Δx) is approximated by 
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Linear Approximation of Δ f 

If f is differentiable at x = a and Δx is small, then

where  

xaff  )(

).()( afxaff 

Approximating f (x) by Its Linearization Assume that f is differentiable at x = a. 

If x is close to a, then

The error in the Linear Approximation is the quantity

In many cases, the percentage error is more relevant than the error itself:
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• Related rate problems present us with situations in which one or more 
variables are related by an equation.

• In related rate problems, the goal is to calculate an unknown rate of 
change in terms of other rates of change that are known. This will usually 
require implicit differentiation. 

Algorithm: 

Draw a diagram if possible. 

• Step 1. Assign variables and restate the problem.

• Step 2. Find an equation that relates the variables and differentiate.

This gives us an equation relating the known and unknown derivatives. 
Remember not to substitute values for the variables until after you have 
computed all derivatives.

• Step 3. Use the given data to find the unknown derivative.

The two facts from geometry that arise most often in related rate problems 
are the Pythagorean Theorem and the Theorem of Similar Triangles (ratios of 
corresponding sides are equal).

2.8. Related rates



Positions of a ladder at 
times t = 0, 1, 2

How fast does the top of the ladder move if the bottom of  the 
ladder is pulled away from the wall at constant speed?

Ladder Problem. A 16-ft ladder leans against a wall. The 

bottom of the ladder is 5 ft from the wall at time t = 0 and 

slides away from the wall at a rate of 3 ft/s. Find the velocity 

of the top of the ladder at time t = 1.

Solution. Step 1. Assign variables and restate the problem. 

Since we are considering how the top and bottom of the 

ladder change position, we use variables:

• x = x (t) distance from the bottom of the ladder to the wall

• h = h (t) height of the ladder’s top

2.8. Related rates

Both x and h are functions of time. The velocity of the bottom is dx/dt = 3 ft/s. Since the 

velocity of the top is dh/dt and the initial distance from the bottom to the wall is x (0) = 5, we 

can restate the problem as

Compute         at  t = 1 given that                     and x (0) = 5ft
dt

dh
ft/s3

dt

dx



2.8. Related rates

Step 2. Find an equation that relates the variables and differentiate.

To solve this problem, we need an equation relating x and h. This is 

provided by the Pythagorean Theorem:

To calculate dh/dt, we differentiate both sides of this equation with respect 

to t:   

This yields                         and since                      the velocity of the top is

Step 3. Use the data to find the unknown derivative.

To apply this formula, we must find x and h at time t = 1. 

Since the bottom slides away at 3 ft/s and x (0) = 5,

we have x (1) = 8 and 

The variables x and h
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2.8. Related rates
Filling a Conical Tank. Water pours into a conical tank of height 10 ft and 

radius 4 ft at a rate of 10 ft3/min.  How fast is the water level rising when it 

is 5 ft high?

Step 1. Assign variables and restate the problem.

Let V and h be the volume and height of the water in the tank at time t . The 

problem is

Compute         at  h = 5 given that  
dt

dh /minft10 3
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dV

;
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4
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h

r

Step 2. Find an equation that relates the variables and differentiate.

The volume is                     where r is the radius of the cone at height h, but we cannot use this 

relation unless we eliminate the variable r. Using similar triangles, we see that 

Do not set h = 5 until the end of the problem, after the derivatives have been computed. This 

applies to all related rate problems.

Step 3. Use the data to find the unknown derivative.

Using the given data dV/dt = 10, we have                                

When h = 5, the level is rising at dh/dt ≈ 20/52 = 0.8 ft3/min.

hr 4.0

,
3

1 2hrV 

32 )16.0(
3

1
)4.0(

3

1
hhhV  

dt

dh
h

dt

dV 2)16.0( 

10)16.0( 2 
dt

dh
h

22

20

)16.0(

10

hhdt

dh






2.8. Related rates
Tracking a Rocket. A spy tracks a rocket through a telescope to 

determine its velocity. The rocket is traveling vertically from a 

launching pad located 10 km away. At a certain moment, the spy’s 

instruments show that the angle between the telescope and the ground is 

equal to π/3 and is changing at a rate of 0.5 rad/min. What is the rocket’s 

velocity at that moment?

Step 1. Assign variables and restate the problem.

Let θ be the angle between the telescope and the ground, and let y be the height of the rocket at 

time t. Then our goal is to compute the rocket’s velocity dy/dt when θ = π/3. We restate the 

problem as follows:

Step 2. Find an equation that relates the variables and differentiate.

We need a relation between θ and y. Now differentiate with respect to time:

Step 3. Use the given data to find the unknown derivative.

At the given moment, θ = π/3 and dθ/dt = 0.5. 

Compute              given that                                  when θ = π/3  
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The rocket’s velocity at this moment is 20 km/min 

or 1,200 km/hour.
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The Derivative

The simple functions Implicit differentiation

An acceleration

The tangent line

If this limit does exist, we say that f is differentiable at x. 

If  the derivative  f ′ (c) exists at the point c, then f is 
continuous function at point c.

The function f ′ can be evaluated at any point; To evaluate 
it at a particular point, we write something like:   

is a differential operator.

The composite functions The Differential
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The derivative at a point of a function is the slope of the

tangent line to the graph of the function at that point.

The equation of the tangent line at point x0:

Three ways for ƒ not to be differentiable at c

A corner      A discontinuity    A vertical tangent 
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- the first derivative of the position function represents the

instantaneous velocity of the object as a function of time

- the instantaneous rate of change of velocity

with respect to time is called the acceleration

- the formula of the position function (in feet) for an object which

is thrown straight upward (or downward) in the gravity field.
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If the derivative of function f (x) at the point x is f '(x), we 

define the differential of the function f (x) by df (x) such as

The differential dx represents an infinitely small change in 

the variable x.
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The derivative of a composite 

function is the derivative of the 

outer function evaluated at the 

inner function, times the 

derivative of the inner function 

Implicit differentiation is used to compute

dy/dx when x and y are related by an

equation.

Step 1. Take the derivative of both sides of

the equation with respect to x.

Step 2. Solve for y′ by collecting the terms

involving y′ on one side and the remaining

terms on the other side of the equation.

Remember to include the factor dy/dx when

differentiating expressions involving y with

respect to x.

Related rate problems

The goal is to calculate an unknown rate of 

change in terms of other rates of change that 

are known. This will usually require implicit 

differentiation. 

Algorithm: 

Step 1. Assign variables and restate the 

problem.

Step 2. Find an equation that relates the 

variables and differentiate.

Step 3. Use the given data to find the 

unknown derivative.

Assume that f is differentiable at x = a.  If x is 
close to a, then    

is the linearization of f at x = a. The Linear 
Approximation can be rewritten as the 
estimate f (x) ≈ L(x) for small |x − a|.

- a good approximation for finding roots and 
powers of the numbers.
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3.1. Maxima and Minima

C(t) = drug concentration in bloodstream

• A physician must determine the maximum drug 

concentration in a patient’s bloodstream when a drug 

is administered. 

• This amounts to finding the highest point on the graph 

of C(t), the concentration at time t.

Some of the most important applications of differential calculus are optimization problems,

in which we are required to find the optimal (best) way of doing something: 

• What is the shape of a can that minimizes manufacturing costs?

• What is the maximum acceleration of a space shuttle? (This is an important question to the 

astronauts who have to withstand the effects of acceleration).

• What is the radius of a contracted windpipe that expels air most rapidly during a cough?

• At what price should a business sell its products in order to maximize revenue?



3.1. Maxima and Minima
Def. Maxima and minima

Let S, the domain of  f, contain the point c. We say that

1. f (c) is the maximum value of  f on S if f (c) ≥ f (x) for all x in S;

2. f (c) is the minimum value of  f on S if f (c) ≤  f (x) for all x in S;

3. f (c) is an extreme value (extremum) of  f on S if it is either the maximum value 

or the minimum value;

4. the function we want to maximize or minimize is the objective function. 

f is continuous, [-1, 2] is closed. f is continuous, (-1, 2) is open. g is not continuous, [-1, 2] is closed.



3.1. Maxima and Minima
Theorem A. Max-Min Existence Theorem (Extreme Value Theorem)

If f is continuous on a closed interval [a,b], then f attains both a maximum value 

and a minimum value there.

g(x) is discontinuous and has 

no max on [a, b].

f (x) has no min or max on

the open interval (a, b).

h(x) is continuous and [a, b] is closed.

Therefore, h(x) has a min and max on [a, b].

This function has minimum value 

f (2)=0, but no maximum value.

This continuous function g 

has no maximum or 

minimum.

minimum 

value f(a)

maximum 

value f(d)

no 

minimum, 

no 

maximum
Minimum value 0, no maximum



3.1. Maxima and Minima

Extrema can occur at endpoints of 

an interval. 
If c is a point at which f ′(c) =0, 

we call c a stationary point. 

If c is an interior point of an interval where  f ′ 

fails to exist, we call c a singular point. 

. 

Def. Critical point

Let  f  be defined at c. If f ′(c) = 0 or if f is not differentiable at c, then c is a critical 

point of f.

c is a critical point of f



3.1. Maxima and Minima
Theorem B. Critical Point Theorem (Fermat’s Theorem)

Let f  be defined on an interval I containing the point c. If f (c) is an extreme 

value, then c must be a critical point; that is, either c is an end point of  I or

a stationary point of  f or a singular point of f. 

GUIDELINES FOR FINDING EXTREMA ON A CLOSED INTERVAL

To find the extrema of a continuous function f  on 

a closed interval [a, b], use the following steps.

1. Find the critical points of f  in (a, b). 

2. Evaluate f at each critical point in (a, b).

3. Evaluate f at each endpoint of [a, b].

4. The least of these values is the minimum. 

The greatest is the maximum.



3.2. Monotonicity and Concavity
Def. Increasing / Decreasing behavior of functions

Let f  be defined on an interval I (open, closed, or neither). We say that

f is increasing on I if, for every pair of numbers x1 and x2 in I,

f is decreasing on I if, for every pair of numbers x1 and x2 in I,

f is strictly monotonic on I if it is either increasing on I or decreasing on I.

)()( 2121 xfxfxx 
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3.2. Monotonicity and Concavity
Theorem A. Monotonicity Theorem

Let f  be continuous on an interval I and differentiable at every interior point of I. 

We say that

If                  for all x interior to  I, then f is increasing on I.

If                  for all x interior to  I, then f is decreasing on I.

0)(  xf

0)(  xf



Def. Concavity
3.2. Monotonicity and Concavity

Let f  be differentiable on an open interval I. We say that

f (as well as its graph) is concave up on I if f ′ is increasing on I. 

f (as well as its graph) is concave down on I if f ′ is decreasing on I. 

a curve is called concave up if it bends up

a curve is called concave down if it bends down



3.2. Monotonicity and Concavity
Theorem B. Concavity Theorem

Let f  be twice differentiable on the open interval I.

If                  for all x in I, then f is concave up on I.

If                  for all x in I, then f is concave down on I.
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3.2. Monotonicity and Concavity
We say that P = (c, f (c)) is a point of inflection of f (x) if the concavity changes 

from up to down or vice versa at x = c. In other words,  f ′(x) is increasing on one 

side of x = c and decreasing on the other.

If                    and            changes sign at c,

then c is a point of inflection.
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Theorem. Test for Inflection Points

Points where                    or where              does not exist are 

the candidate for the points of inflection.         

0)(  xf )(xf 



Def. Maxima and minima

Let S, the domain of  f, contain the point c. We say that

1. f (c) is the global (absolute) maximum of  f on S if f (c) ≥ f (x) for all x in S;

2. f (c) is the global (absolute) minimum of  f on S if f (c) ≤  f (x) for all x in S;

3. f (c) is an global (absolute) extremum of  f on S if it is either the maximum value 

or the minimum value.

3.3. Local and Global Extrema

The absolute maximum is the highest of the 
local maxima; 
the absolute minimum is the lowest of the 
local minima. 



Def. Maxima and minima

Let S, the domain of  f, contain the point c. We say that

1. f (c) is a local (relative) maximum of  f if there is an interval (a, b) containing c such that f 

(c) is the maximum value of  f  on (a, b) ∩ S; (the symbol ∩ denotes the intersection (common 

part) of two sets) 

2. f (c) is a local (relative) minimum of  f if there is an interval (a, b) containing c such that f 

(c) is the minimum value of  f  on (a, b) ∩ S; 

3. f (c) is a local (relative) extremum of  f if it is either a local maximum value or a local 

minimum value.

3.3. Local and Global Extrema

Tangent line is horizontal

at the local extrema.

This local minimum 

occurs at a point where 

the function is not 

differentiable.



3.3. Local and Global Extrema
Theorem A. First Derivative Test

Let f  be continuous on an open interval (a, b) that contains a critical point c. 

1. If                  for all x in (a, c) and                 for all x in (c, b), then f (c) is a local maximum of  f .

2. If                  for all x in (a, c) and                 for all x in (c, b), then f (c) is a local minimum of  f .

3. If            has the same sign on both sides of c, then f (c) is not a local extreme value of  f .

0)(  xf 0)(  xf

0)(  xf

)(xf 
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If  f ′ does not change sign at c, then f  has 

no local maximum or minimum at c.



3.3. Local and Global Extrema
Theorem B. Second Derivative Test

Let          and exist at every point in an open interval (a, b) containing c, and suppose that  

1. If                , then f (c) is a local maximum of  f .

2. If                , then f (c) is a local minimum of  f .

)(xf  )(xf  .0)(  cf
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Concavity determines whether the critical point is a local 

minimum or maximum.

Inflection points of  f 

occur where f ′ (x) 

has a local min or 

max



3.4. Optimization Problems
Some of the most important applications of differential calculus are optimization problems, in which 
we are required to find the optimal (best) way of doing something. 

STEPS IN SOLVING OPTIMIZATION PROBLEMS
1. Understand the Problem The first step is to read the problem carefully until it is
clearly understood. Ask yourself: What is the unknown? What are the given quantities?
What are the given conditions?

2. Draw a Diagram In most problems it is useful to draw a diagram and identify the
given and required quantities on the diagram.

3. Introduce Notation Assign a symbol to the quantity that is to be maximized or
minimized (let’s call it Q for now). Also select symbols (a, b, c, . . . , x, y) for other
unknown quantities and label the diagram with these symbols. It may help to use
initials as suggestive symbols—for example, A for area, h for height, t for time.

4. Express Q in terms of some of the other symbols from Step 3.

5. If Q has been expressed as a function of more than one variable in Step 4, use the
given information to find relationships (in the form of equations) among these
variables. Then use these equations to eliminate all but one of the variables in the
expression for Q. Thus Q will be expressed as a function of one variable x, say, Q = f (x). Write the 
domain of this function.

6. Use the theorems (the first and the second derivatives tests) to find the maximum or minimum 
value of f.



3.4. Optimization Problems

Step 1. Choose variables

Step 2. Find the function 
and the interval

Step 3. Optimize the 
function



1. Geometrical example (maximizing area)

A piece of wire of length L is bent into the shape of 
a rectangle.  Which dimensions produce the 
rectangle of maximum area?

3.4. Optimization Problems

Step 1. Choose variables
If the rectangle has sides of length x and y, then its area is A = xy.

Since A depends on two variables x and y, we cannot find the  maximum until we eliminate one 

of the variables.

The perimeter of the rectangle is L and 2x + 2y = L →  we can get y = L/2 − x

An equation relating two or more variables in an optimization problem is called a “constraint 

equation.”

Step 2. Find the function and the interval

Step 3. Optimize the function

Solving A′ (x) = L/2−2x = 0, we find that x = L/4 is the critical point.
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x the sides of the rectangle cannot have negative 

length

Our problem reduces to finding the maximum of A (x) on the closed interval [0, L/2].
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The rectangle of maximum area is the square of 

sides x = y = L/4.



3.4. Optimization Problems
2. Physical example (minimizing time)  

Cowboy Clint wants to build a dirt road from his ranch to the 
highway so that he can drive to the city in the shortest amount 
of time. The perpendicular distance from the ranch to the 
highway is 4 miles, and the city is located 9 miles down the 
highway. Where should Clint join the dirt road to the highway if 
the speed limit is 20 mph on the dirt road and 55 mph on the 
highway?

Step 1. Choose variables
We need to decide where the dirt road should join the highway.

Let x be the distance from P (the point on the highway nearest the ranch) to the point where

the dirt road joins the highway.

We need to compute the travel time T (x) of the trip as a function of x.

By the Pythagorean Theorem, the length of the dirt road is 

The time required to travel a distance d at constant velocity v is t = d/v.

Applying this with v = 20 mph

hours to traverse the dirt road

The strip of highway has length 9 − x. At a speed of 55 mph, it will take

hours to traverse the strip of highway

224 x
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4 22 x

55
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3.4. Optimization Problems

Step 2. Find the function and the interval
The total number of hours for the trip is

Over which interval does the optimization take place?

Since the dirt road joins the highway somewhere between P and the city, we have

Step 3. Optimize the function

Our problem is to find the minimum of T (x) on [0, 9].

We solve T ′(x) = 0 to find the critical points: 

Thus,                               miles.

To find the minimum value of T (x), we compute T (x) 

at the critical point and endpoints of [0, 9]: 
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We conclude that the travel time is minimized if the dirt road joins 

the highway at a distance x ≈ 1.56 miles from P.

Graph of time of trip as function of x.



3.4. Optimization Problems
2. Economical example (minimizing cost)  

A cylindrical can is to be made to hold 1 L of oil. Find the 
dimensions that will minimize the cost of the metal to 
manufacture the can.

Step 1. Choose variables

r is the radius and h the height (both in centimeters). 

In order to minimize the cost of the metal, we minimize the total surface area of the cylinder 

(top, bottom, and sides).

The sides are made from a rectangular sheet with dimensions       and h.

So the surface area is 

To eliminate h we use the fact that the volume is given as 1 L, which we take to be 1000 cm3.

which gives                        Substitution of this into the expression A for gives 
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3.4. Optimization Problems

Step 2. Find the function and the interval
Therefore the function that we want to minimize is

Since the domain of A is

We can’t use the argument concerning endpoints.

Step 3. Optimize the function
To find the critical numbers, we differentiate:

Then                 when                 , so the only critical number is

We can observe that                  for                        and                 for  

So A is decreasing for all r to the left of the critical number and increasing for all r to the right.

must give rise to an absolute minimum. 

To minimize the cost of the can, the radius should be approximately 5.42 cm and the height

should be equal to twice the radius, namely, the diameter. 
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3.5. Graphing Functions 
When sketching the graph y = f (x) of a function f, we have three sources of useful information: 

1. the function f itself, from which we determine the coordinates of some points on the graph, the 

symmetry of the graph, and any asymptotes; 

2. the first derivative, f ′, from which we determine the intervals of increase and  decrease and the 

location of any local extreme values; and 

3. the second derivative,  f ′′, from which we determine the concavity and inflection points, and 

sometimes extreme values.

Most graphs are made up of smaller arcs that have 
one of the four basic shapes, corresponding to the 
four possible sign combinations of f ′ and f ′′. 

We pay particular attention to the transition 
points, where the basic shape changes due to a 
sign change in either f ′ (local min or max) or f ′′
(point of inflection).



Def. Vertical Asymptote  (recall!)
The line         is called a vertical asymptote of the curve              if at least one of the following 

statements is true:
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Def. Horizontal Asymptote (recall!)
The line         is called a horizontal asymptote of the curve              if 

either   

or
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3.5. Graphing Functions 



3.5. Graphing Functions 
Def. Oblique Asymptote 

The straight line y=ax+b (where a ≠ 0) is an oblique asymptote of the graph 

of                  if  either 

or                                               or  both.
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It can happen that the graph of a function f approaches a nonhorizontal 

straight line as x approaches ∞ or -∞ (or both). 
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3.5. Graphing Functions 

Polynomial function.  Sketch the graph of .32
2

1

3

1
)( 23  xxxxf

Step 1. Precalculus analysis
a) The domain : x - any real numbers. 

b) Symmetry: this function is neither even nor odd, so we do not have any of the usual symmetries. 

c) The intercepts: the y-intercept f (0) =3, when x =0.

Step 2. Calculus analysis
a) The first derivative: set the derivative equal to zero to find the critical points: 

The critical points c = −1, 2 divide the x-axis into intervals 

(−∞,−1), (−1, 2), and (2,∞):

b) The second derivative: set the second derivative equal to zero and solve:

It has the solution c = ½  and the sign of the second derivative is as follows:

.0)2)(1(2)( 2  xxxxxf

.012)(  xxf



3.5. Graphing Functions 
Polynomial function.  Sketch the graph of .32
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Step 2. Calculus analysis
c) Note transition points and sign combinations:

There are three transition points:  

c = −1: local max since f ′ changes from + to − at c = −1.

c = ½: point of inflection since f ′′ changes sign at c = ½ .

c = 2: local min since f ′ changes from − to + at c = 2.

Step 3. Plot a few points      Step 4. Sketch the graph

It is necessary to compute y-values at these 

points:

f (−1) = 25/6;  f (1/2) = 23/12;   f (2) = − 1/3 .

Notice that the graph of our cubic is built out of four arcs, each 
with the appropriate increase/decrease and concavity behavior



3.5. Graphing Functions 
Trigonometric function.  Sketch the graph of over the interval [0,π].xxxf

2
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Step 1. Precalculus analysis
a) The domain : x in [0,π]. 

b) Symmetry: this function is neither even nor odd, so we do not have any of the usual symmetries. 

c) The intercepts: the y-intercept f (0) =1, when x =0.

Step 2. Calculus analysis
a) The first derivative:                                                          

b) The second derivative: 
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It is necessary to compute y-values at these points:

f (π/6) ≈ 1.13;   f (π/2) ≈ 0.79;   f (5π/6) ≈ 0.44;  f (π) ≈ 0.57.

c) Note transition points and sign combinations:

There are three transition points: 

c = π/6: local max since f ′ changes from + to − at c = π/6 .

c = π/2: point of inflection since f ′′ changes sign at c = π/2.

c = 5π/6: local min since f ′ changes from − to + at c = 5π/6. 

End points

End points

Step 3,4. Sketch the graph



3.5. Graphing Functions 
Rational function.  Sketch the graph of .
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Step 1. Precalculus analysis
a) The domain : all x except 0. 

b) Symmetry: none obvious (y is neither odd nor even).  

c) The intercepts: none.                                               for all x, and y is not defined at x=0. 33)1(42 22  xxx

Step 2. Calculus analysis
a) The first derivative:                                                          

b) The second derivative:

f" =0 nowhere; f" undefined at x =0.
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c) Note transition points and sign combinations:

There are three transition points: 

c = −2: local max since f ′ changes from + to − at c = −2.

c = 2: local min since f ′ changes from − to + at c = 2. 

d) Asymptotes: 

Vertical asymptote: x = 0,

Horizontal asymptote: DNE

Oblique asymptote: 

no point of inflection, f ′′ changes sign at 0, but f ′′ DNE at 0

Stationary point Stationary pointSingular point
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It is necessary to compute y-values at these points:

f (−2) = −1;  f (2) = 3. 

Step 3,4. Sketch the graph



3.5. Graphing Functions 

Step 1. Precalculus analysis
a) Domain 

b) Symmetry 
c) Intercepts 

Step 2. Calculus analysis
a) The first derivative 

b) The second derivative
c) Transition points and sign  combinations

d) Asymptotes

Step 3. Plot a few points

Step 4. Sketch the graph 



3.6. The Mean Value Theorem for Derivatives  

Consider the secant line through points (a, f (a)) and (b, f (b)) on a graph.

You can see  there exists at least one tangent line that is parallel to the secant 

line in the interval (a, b). 

Because two lines are parallel if they have the same slope, what the Mean 

Value Theorem claims is that there exists a point c between a and b such that
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Theorem A. Mean Value Theorem for Derivatives 

If f is continuous on a closed interval [a, b] and differentiable on its interior (a, b), then there is at 

least one number c in (a, b) where 

or equivalently, where  
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To see that the Mean Value Theorem is plausible, imagine what 
happens when the secant line is moved parallel to itself.



3.6. The Mean Value Theorem for Derivatives  
Since f ′ (c) is the slope of the tangent line at the point (c, f (c)), the Mean Value Theorem says that there is 

at least one point P(c, f (c)) on the graph where the slope of the tangent line is the same as the slope of the 

secant line AB. In other words, there is a point P where the tangent line is parallel to the secant line AB.

Physical Interpretation: If we think of the difference quotient                                     as the average 

change in f  over [a, b]  and f ′ (c)  as an instantaneous change, then the Mean Value Theorem says that

the instantaneous change at some interior point must equal the average change over the entire interval.

)/())()(( abafbf 

• If a car accelerating from zero takes 8 sec to go 
352 ft, its average velocity for the 8-sec interval is 
352/8= 44 ft/sec, or 30 mph. 

• At some point during the acceleration, the 
theorem says, the speedometer must read exactly 
30 mph.



3.6. The Mean Value Theorem for Derivatives  
Corollary 1.  If                   for all x in an interval (a, b), then  f is constant on (a, b).0)(  xf

Theorem B. (Corollary 2.)

If                             for all x in an interval (a, b), then there is a constant C  such that 

for all x in (a, b).
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3.7. Solving Equations Numerically
Newton’s Method
• Suppose the root that we are trying to find is labeled r.

• We start with a first approximation x1, which is obtained by guessing, 

or from a rough sketch of the graph of  f.

• Consider the tangent line L to the curve y = f (x) at the point (x1, f (x1)) 

and look at the x-intercept of L, labeled  x2. 

• The idea behind Newton’s method is that the tangent line is close to 

the curve and so its x-intercept, x2, is close to the x-intercept of the 

curve (namely, the root r that we are seeking).

• To find a formula for x2 in terms of x1 we use the fact that the slope of L is f ′(x1), so its equation is
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The Mean Value Theorem 

• Since the x-intercept of L is x2, we set y =0 and obtain

• If                       we can solve this equation for x2:

• We use x2  as a second approximation to r.
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3.7. Solving Equations Numerically

Newton’s Method
• Next we repeat this procedure with x1 replaced by x2, using the tangent 

line at (x2, f (x2)). This gives a third approximation:

• If we keep repeating this process, we obtain a sequence of approximations 

x1, x2 , x3 , x4, ….. 

• In general, if the nth approximation is xn and                        then the next 

approximation is given by                                          
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Newton’s Method To find a numerical approximation to a root of f (x)= 0:

Step 1. Choose initial guess x0 (close to the desired root if possible).

Step 2. Generate successive approximations x1, x2 , … where
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• If the numbers xn  become closer and closer to r as becomes large, then we say that the sequence 

converges to  r and we write rxn
n
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recursion  formula or 

iteration scheme



3.7. Solving Equations Numerically

• Although the sequence of successive approximations converges to the 

desired root for functions, in certain circumstances the sequence may not 

converge.

• You can see (figure) that x2 is a worse approximation than x1. This is likely 

to be the case when f ′ (x1) is close to 0. It might even happen that an 

approximation (such as x3 in figure) falls outside the domain of  f.

• Then Newton’s method fails and a better initial approximation should be chosen.

How Many Iterations Are Required? 
In practice, it is usually safe to assume that if xn and xn+1 agree to m decimal places, then the 
approximation xn is correct to these m places.

Function has only one zero but the sequence of

Newton iterates goes off to infinity.

the geometry behind the first 

step in Newton’s method 



8.1. Indeterminate Forms of Type 0/0

Theorem A. L’Hôpital’s Rule for forms of type 0/0

Suppose that 

If                                 exists in either the finite or infinite sense  (i.e., if this 

limit is a finite number or −∞ or +∞), then
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• L’Hôpital’s Rule says that the limit of a quotient of functions is equal to 

the limit of the quotient of their derivatives, provided that the given 

conditions are satisfied. 

• Notice that when using l’ Hôpital’s Rule we differentiate the 

numerator and denominator separately. 

We do not use the Quotient Rule !!!

• L’Hôpital’s Rule is also valid for one-sided limits and for limits at 

infinity or negative infinity.



8.1. Indeterminate Forms of Type 0/0

This figure suggests visually why l’Hôpital’s Rule might be true.

• The first graph shows two differentiable functions f and g, each of which approaches 0 as x→a . 

If we were to zoom in toward the point (a,0) , the graphs would start to look almost linear. But if 

the functions actually were linear, as in the second graph, then their ratio would be

which is the ratio of their derivatives. This suggests that
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Derivative
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Approximations and 
numerical calculations

Graphing functions

Practical problems

The goal is to calculate an unknown rate of change in 
terms of other rates of change that are known. This will 
usually require implicit differentiation. 

Algorithm: 

Step 1. Assign variables and restate the problem.

Step 2. Find an equation that relates the variables and 
differentiate.

Step 3. Use the given data to find the unknown derivative.

Related rate 
problems

Optimization 
problems

We are required to find the optimal (best) way of doing 
something. This will usually require extrema theorems. 

Algorithm: 

Step 1. Choose variables.

Step 2. Find the function and the interval.

Step 3. Optimize the function.

Differential  
equations

Any equation in which the unknown is a function and that 
involves derivatives of this unknown function. 

Algorithm: 

Step 1. Choose variables.

Step 2. Write the differential equation and separate 
variables.

Step 3. Evaluate the solution.

Linear 
approximation

Assume that f is differentiable at x = a.  If x is close to a, 
then                                          

is the linearization of f at x = a. The Linear 
Approximation can be rewritten as the estimate f (x) ≈ 
L(x) for small |x − a|.

- a good 
approximation for finding roots and powers of the 
numbers.
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Solving equations 
numerically

Newton’s Method: To find a numerical approximation 

to a root of  f (x)= 0:

Iteration scheme : 

Step 1. Choose initial guess x0 (close to the desired root if

possible).

Step 2. Generate successive approximations x1, x2 , …

where
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Finding limits

L’Hôpital’s Rule says that the limit of a quotient of 

functions is equal to the limit of the quotient of their 

derivatives, provided that some conditions are satisfied. 
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Monotonicity

Concavity

Extrema

Antiderivative

Let f  be continuous on an interval I and differentiable at 

every interior point of I. We say that

If f ′(x)>0 for all x interior to  I, then f is increasing on I.

If f ′(x)<0  for all x interior to  I, then f is decreasing on I.

Let f  be twice differentiable on the open interval I.

If f ′′ (x)>0 for all x in I, then f is concave up on I.

If f ′′ (x)<0 for all x in I, then f is concave down on I.

If f ′′ (x)=0 and  f ′′ (x) changes sign at c, then c is a 

point of inflection.

(First derivative test) Let f  be continuous on an open 

interval (a, b) that contains a critical point c. 

If f ′(x)>0 for all x in (a, c) and f ′(x)<0 for all x in (c, b), 

then f (c) is a local maximum of  f . 

If f ′(x)<0 for all x in (a, c) and f ′(x)>0  for all x in (c, b), 

then f (c) is a local minimum of  f . 

(Second derivative test) Suppose that f ′(c)=0.

If f ′′ (x)<0, then f (c) is a local maximum of  f.              

If f ′′ (x)>0, then f (c) is a local minimum of  f .  

Definite Integral
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Mean Value Theorem 

Corollary: Functions 

with the Same Derivative 

Differ by a Constant
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3.8. Antiderivatives: introduction

We call F an antiderivative of  f on the interval I if Dx F(x) = f (x) on I 

that is, if F′ (x) = f (x) for all x in I. 

Def. Antiderivatives

Members of the family of 

antiderivatives of f (x) = x2

We used the Mean Value Theorem to prove that if two functions have 

identical derivatives on an interval, then they must differ by a constant. 

Thus if F and G are any two antiderivatives of f , then F′ (x) = f (x) = G′ (x)

So, G (x) − F (x) = C where is a constant. We can write this as 

G (x) = F (x) + C 

Def. The General Antiderivative

If F is an antiderivative of f on an interval I, then the 

most general antiderivative of  f on I is F (x) + C where 

C  is an arbitrary constant.

The tangent lines to the graphs of y = F(x) and y = F(x) + C are parallel. 
Vertical shifting moves the tangent lines without changing their slopes.



The notation                                           means that F is  an antiderivative of f on an interval.

The operation of finding all antiderivatives for the function is called antidifferentiation (or

integration)

3.8. Antiderivatives: introduction

Notation for Antiderivatives

CxFdxxfy   )()(

CxFdxxf  )()(

variable of integration

constant of
integration

an antiderivative of f (x)
the integral sign

integrand

The expression is read as the antiderivative of f with respect to x.

So, the differential dx serves to identify x as the variable of integration.

The term indefinite integral (as well as primitive function) is a synonym for antiderivative.

dxxf )(



3.8. Antiderivatives: Basic Integration Rules

The inverse nature of integration and differentiation can be verified by substituting F′ (x) for

f (x) in the indefinite integration definition to obtain

Moreover, if then differentiating both sides yields

CxFdxxF  )()( Integration is the “inverse” of differentiation

CxFdxxfy   )()(

)()( xfdxxfDx  Differentiation is the “inverse” of integration

Cxdx 



3.8. Antiderivatives: Basic Integration Rules
Differentiation Formulas Integration Formulas (Theorems A,B,C)
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  Cxxdx sincos
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the antiderivative of a constant times a function is the constant 
times the antiderivative of the function (a constant multiplier can 
be passed across indefinite integral) 

the antiderivative of a sum (difference) is the sum (difference) of 
the antiderivatives

to integrate a power of x, we increase the exponent by 1 and 
divide by the new exponent 

Power rule



3.8. Antiderivatives: Basic Integration Rules

Recall the chain rule as applied to a power of a function.

u=g(x) is a differentiable function and r is a rational number (r ≠ -1)
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Theorem D. Generalized Power Rule

Let g be a differentiable function and r is a rational number different from -1.

Then
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If we let u=g(x) then du = g′(x)dx
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3.9. Intro to Differential Equations

CxFdxxf  )()(

Let’s antdifferentiate (integrate) a f function to obtain a new function F

is equivalent (in differential notation) to)()( xfxF  dxxfxdF )()( 

CxFxdF  )()(

We integrate the differential of a function to obtain the function (plus a constant)

A differential equation  is any equation in which the unknown is a function and that 
involves derivatives of this unknown function

• A function that, when substituted in the differential equation yields an equality, is called 
a solution of the differential equation

• To solve a differential equation is to find an unknown function

• First-order separable  differential equations are equations involving just the first 
derivative of the unknown function  and are such that the variables can be separated, 
one on each side of the equation



3.9. Intro to Differential Equations

13 2  x
dx

dy

In many applications of integration, you are given enough information to 

determine a particular solution. This information is called an initial condition.

CxxxF  3)( General solution

4)2( F Initial condition
2428)2(  CCF

2)( 3  xxxF Particular condition

The particular solution that satisfies the initial condition                 is4)2( F

2)( 3  xxxF

Motion Problems

dt

ds
tstv  )()(

dt

dv
tvta  )()(

 dttvts )()(

 dttatv )()( Velocity is an antiderivative of acceleration

Position is an antiderivative of velocity


