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MaremaTtnka B Ta6JII/IHaX COACPKUT MaTCpuaibl HA AQHIJIMKMCKOM SI3BIKE K 3aHSATHSAM 110 OCHOBAM MaTE€MaTH4Y€CKOIO
aHallIn3a, OJHOI'0O U3 ITTaBHBIX U TPYAHBIX pa3acioB BBICIICH MaTeMaTUKH. [locoOue MokeT OBITh MOJIE3HO KaK
IMpCroaaBarc/riM, YNTArOIIUM COOTBCTCTBYIOHII/Iﬁ KypC JIGKHPIﬁ, TaK U CTYACHTAM, U3y4arOIIUM OCHOBBEI
MaTCMaTHYCCKOI'O aHaJIM3a (TGMBI — IIPOU3BOIHBIC BLICIIUX ITOPAAKOB, IIPUIIOKCHHA HpOH3BOIIHOﬁ,
HCOHp@I{CJ’IeHHHﬁ I/IHTCFpaJI). Hcnonp3oBaHue 3TUX MaTCpHaJIOB ITO3BOJUT CACIIATH IIPCIIOAaBaAaHUC OCHOB
YKa3aHHOI'O pa3aciia Ooiee AOCTYIIHBIM M HAITISIAHBIM. HOCKOJII)Ky Ta6JIHHI)I MMpCaAcCTaBJICHBI HA AQHIJIMKCKOM A3BIKC,
TO OHU MOT'YT OBITH MCITOJIE30BaHbI MMperIo4aBaTcCiIsIMU, O6y‘{aI-0HlI/IMI/I CTYACHTOB-MAaTCMAaTHUKOB aHFHHﬁCKOMy
SA3BIKY, 4 TAKKC UX YUCHUKAMU. ITocoOmne MpCaAHa3Ha4YCHO IIPCIKAC BCCTO IJIA HpCHO,Z[aBaTeJIeﬁ U CTYACHTOB
BBICIIHX y‘{€6HLIX 3aB€H€HHﬁ, XOTA OTACIIBHBIC €I'0 YaCTHU MOKHO ITPUMCHATH B pa60Te C YUCHHKAMHU B KJIaCCaXx C
YT JIY6JIGHHBIM N3YYCHHUCM MAaTCMATUKHU.



2.6. Higher-order derivatives

Higher derivatives are the functions obtained by repeatedly differentiating

a functiony =f (x).

If f " is differentiable, the second derivative, denoted f " (read “f double prime ™), is the
derivative of f .

f"(x)=— ( f ’(X)) The second derivative is the rate of change of f' (X)
dx
Population of Sweden
2.86 1+ Year 1993 1994 1995 1996 1997
R 84 - . Population 8,745,109 8,816,381 8,837,496 8,844,499 8,847,625

W Yearly increase 71,272 21,115 7,003 3,126

Z 8.82-

= 3.80-

Z 878 * The population P (t) of Sweden has increased every
8.76 - year for more than 100 years (therefore, the first
8747 derivative P’ (t) is positive).

8.72

1993 19I94 19I95 19I96 19’97 * Table shows that the rate of yearly increase
Population P(r) of Sweden (in declined dramatically in the years 1993-1997.
millions).The rate of increase declined in * Soalthough P’ (t) was still positive in these years,
the period 1993-1997. P’ (t) decreased and therefore the second derivative

P” (t) was negative in the period 1993-1997.



2.6. Higher-order derivatives

Derivative Prime Notation Operator Notation Leibniz Notation
. [} dy
First y Dx y i
" 2 d?y
Second y DX y =
. " 3 d3y
Third Yy DX y o
(4) 4 d’y
Fourth y DX y o
(n) . d"y
It y DX y dx"

Leibniz’s notation for the second derivative is read the second derivative of y with respect to x

g—i has units of y per unit of x;

d
%Y has units of = per unit of X, or units of y per unit of x-squared.
dXZ dX



2.6. Higher-order derivatives

Can we visualize the rate represented by a second derivative?

IZN

(A) Large second derivative: (B) Smaller second derivative: (C) Second derivative is zero:
Tangent lines turn rapidly. Tangent lines turn slowly. Tangent line does not change.
Y Y
Slopes of tangent

b .
L ; X) s increasin
lines increasing Jx) g

~

f7'(x) 18 positive

| : x

7; b

Graph of f(x) Graph of first two denvatives



2.6. Higher-order derivatives
If s = s (1) is the position function of an object that moves in a straight line, we know

that its first derivative represents the instantaneous velocity of the object as a function of time:

v(t) =s'(t) =—=5s(t)

The instantaneous rate of change of velocity with respect to time is called the acceleration

of the object:

a(t) =Vv'(t) = s"(t)

dv  d?s

a(t)=OI e - =5(t)

The third derivative of the position function is the derivative of the acceleration function and

Is called the jerk:

. da d’ S _
(i
e S(t)

The jerk is the rate of change of acceleration. It is aptly named because a large jerk
means a sudden change in acceleration, which causes an abrupt movement in a vehicle.



2.6. Higher-order derivatives
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2.7. Implicit differentiation

The functions that we have met so far X% + y2 — 25

can be described by expressing one

¥
variable explicitly in terms of another / \ / \

variable, in general, y =f (x). Some -. 0 X 0 X 0
functions, however, are defined \ /

implicitly by a relation between x and y. (a) ¥+ 3> =125 (b) Fix)=+/25 — 22 (©) glx)=—+/25— 2

When we say that is a function defined implicitly by equation x® + y3 = 6XY, we mean that

the equation X° +[f (X)]° = 6xf(X) is true for all values of X in the domain of f.

¥ ¥4 Fh ¥4
2y =8xy

N /" Y,

] x ) x ] x 0

The folium of Descartes Graphs of three functions defined by the folium of Descartes



2.7. Implicit differentiation

We don’t need to solve an equation for y in terms of X in order to find the
derivative of y. We can use the method of implicit differentiation.

This consists of differentiating both sides of the equation with respect to X and
then solving the resulting equation for y'.

Here it is always assumed that the given equation determines y implicitly as a
differentiable function of X so that the method of implicit differentiation can be
applied.

Algorithm:

Implicit differentiation is used to compute dy/dx when X and y are related by an
equation.

Step 1. Take the derivative of both sides of the equation with respect to X.

Step 2. Solve for y' by collecting the terms involving y" on one side and the
remaining terms on the other side of the equation.

Remember to include the factor dy/dx when differentiating expressions involving
y with respect to X. For instance,

d . dy
—SINn Y = (COS —_—
" y =(cos y) »
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2.7. Implicit differentiation
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2.9. Differentials and approximations

o P (X, f(x), Q (x+Ax, f (x+ AX))

o dx=Ax, Ay = f(x+Ax)— f(X)

* the slope of the tangent line PR is the derivative 1 (x)
« the directed distance from Sto R is f'(x)dx = dy.

 dy represents the amount that the tangent line rises or

falls; Ay represents the amount that the curve rises or

falls when x changes by an amount dx.

Def. Differentials

Lety =f (X) be a differentiable function of the independent variable x.

AX 1s an arbitrary increment in the independent variable x.

dx, called the differential of the independent variable X, is equal to Ax.

Ay is the actual change in the variable y as x changes from x to x + Ax; that is,
Ay = f(x+ Ax)— f(X).

dy, called the differential of the independent variable y, is defined by
dy = f'(x)dx




2.9. Differentials and approximations

Differential Rule

dk =0, k =const d(ku) = kdu, k =const

dlu+v)=du+dv  d(uv)=udv+vdu

d(Ej _vdu—udv ") = nu™du

Vv Y&

Derivatives and differentials are not the samel!!l
dy

— - a symbol for the derivative

dx
dy -asymbol for the differential



2.9. Differentials and approximations
Suppose that y = f (x) . An increment Ax produces a corresponding increment Ay in'y, which

can be approximated by dy. Thus, f (x + AXx) is approximated by
f(Xx+AX) = f(X)+dy = f(xX)+ f'(X)Ax

¥

farand Linear Approximation of A f

s I fis differentiable at x = a and Ax is small, then
Af ~ f'(a)AX
. Where Af = f (a+Ax)— f(a).

fla) 1

& a#ﬁx
Approximating f (x) by Its Linearization Assume that f is differentiable at x = a.
If x is close to a, then

f(X)~L(x)=f'(a)(x—a)+ f(a)
The error in the Linear Approximation is the quantity Error =|Af — f'(2)AX

In many cases, the percentage error is more relevant than the error itself:

error

Percentage error =
actual value

x100%




2.8. Related rates

* Related rate problems present us with situations in which one or more
variables are related by an equation.

* Inrelated rate problems, the goal is to calculate an unknown rate of
change in terms of other rates of change that are known. This will usually
require implicit differentiation.

Algorithm:
Draw a diagram if possible.
e Step 1. Assign variables and restate the problem.
* Step 2. Find an equation that relates the variables and differentiate.

This gives us an equation relating the known and unknown derivatives.
Remember not to substitute values for the variables until after you have
computed all derivatives.

* Step 3. Use the given data to find the unknown derivative.

The two facts from geometry that arise most often in related rate problems
are the Pythagorean Theorem and the Theorem of Similar Triangles (ratios of
corresponding sides are equal).



2.8. Related rates

How fast does the top of the ladder move if the bottom of the
ladder is pulled away from the wall at constant speed?

Ladder Problem. A 16-ft ladder leans against a wall. The
bottom of the ladder is 5 ft from the wall at time t = 0 and
slides away from the wall at a rate of 3 ft/s. Find the velocity
of the top of the ladder at time t = 1.

Solution. Step 1. Assign variables and restate the problem.
Since we are considering how the top and bottom of the
ladder change position, we use variables:

» X =X (t) distance from the bottom of the ladder to the wall

* h=h(t) height of the ladder’s top

Positions of a ladder at
timest=0, 1, 2

Both x and h are functions of time. The velocity of the bottom is dx/dt = 3 ft/s. Since the

velocity of the top is dh/dt and the initial distance from the bottom to the wall is x (0) =5, we

can restate the problem as

Compute % at t =1 given that % =3 ft/s and x (0) = 5ft




2.8. Related rates

Step 2. Find an equation that relates the variables and differentiate.
The variables x and h
To solve this problem, we need an equation relating x and h. This is

16
provided by the Pythagorean Theorem: x* +h* =16 !

To calculate dh/dt, we differentiate both sides of this equation with respect |

d d d dx dh
tot: —x°+—h’=—16 2 ioh— = X
a” Tar a0
dx
This yields dh _ X OX andsince — =3 ftis, the velocity of the top is
dt  hdt dt
il —35 ft/s
dt h t | x kb dhjdr

5 1520 —-099

0

_ _ _ 1| 8 138 —173

To apply this formula, we must find x and h at time t = 1., 2| 11 1182 284
3

14 TS =542

Step 3. Use the data to find the unknown derivative.

Since the bottom slides away at 3 ft/s and x (0) = 5,
we have x (1) = 8 and h(1) = V16* —8° ~13.86

dhl _ _ox@
dtl.,  hQ)

This table of values confirms that the top of
the ladder is speeding up.

~-1.7 ft/s



2.8. Related rates

Filling a Conical Tank. Water pours into a conical tank of height 10 ft and
radius 4 ft at a rate of 10 ft3/min. How fast is the water level rising when it
Is 5 ft high?

Step 1. Assign variables and restate the problem.

Let V and h be the volume and height of the water in the tank at time t. The
problem is

Y :
Compute b at h =5 given that O(lj—t—lo ft */min

dt

Step 2. Find an equation that relates the variables and differentiate.

The volumeis V = l7zhr2, where r is the radius of the cone at height h, but we cannot use this
r=0.4h

relation unless we ellmlnate the variable r. Using similar triangles, we see that —

dv dh
Y :—ﬂh(0.4h)2 :—7r(0.16)h3 — =(0.16)7* —
3 3 g~ 010G

Do not set h = 5 until the end of the problem, after the derivatives have been computed. This

applies to all related rate problems.
Step 3. Use the data to find the unknown derivative.

h

10

Using the given data dV/dt = 10, we have (0.16)7h? an =10 dh __ 10

~Y

20

dt dt  (0.16)7h?

1

When h = 5, the level is rising at dh/dt = 20/52 = 0.8 ft3/min.

10



Tracking a Rocket. A spy tracks a rocket through a telescope to tan 0 = 10
determine its velocity. The rocket is traveling vertically from a
launching pad located 10 km away. At a certain moment, the spy’s <
instruments show that the angle between the telescope and the ground is Jg“-""e \ L
equal to /3 and is changing at a rate of 0.5 rad/min. What is the rocket’s " 0w
velocity at that moment?
Step 1. Assign variables and restate the problem.
Let 6 be the angle between the telescope and the ground, and let y be the height of the rocket at
time t. Then our goal is to compute the rocket’s velocity dy/dt when 6 = nt/3. We restate the

problem as follows:

2.8. Related rates y j

dy . do . B

Compute at given that py = 0.5 rad/min when 8 =n/3
P

3

Step 2. Find an equation that relates the variables and differentiate.
We need a relation between 6 and y. Now differentiate with respect to time:

,,d0 1dy dy 10 dé

sec” @ = : = >
dt 10dt dt cos“é@ dt
Step 3. Use the given data to find the unknown derivative.| dy 10 5
At the given moment, 8 = /3 and d6/dt = 0.5. dt - cos?(r/3) (0.5) = cos?(z/3)
dy 5 10

(0.5) =20 kmymin

The rocket’s velocity at this moment 1s 20 km/min

dt cos?(z/3) (0.5)
or 1,200 km/hour.



The Derivative
Ay

e A
f(x+Ax)— f(X)

The simple functions F

f'(x)=0, f(x)=k=const
f'(x)=1, f(x)=x

(kf)' =k- f', k=const

f r(Xn) — an—l

(sin x)' =cosx (cosXx)' =-sin X
(tan )’ =sec® X (cot x)' =—csc” X

v

it at a particular point, we write something like: dl
X

The function f ' can be evaluated at any point; To Tvaluate

d . . - :
0] o - = D, =i is a differential operator. =

C The tangent line D

The derivative at a point of a function is the slope of the
tangent line to the graph of the function at that point.

d : . .
f(x) = d—y =D,f(9= f(9 = lm " = m, A
— AX— AX—> o e . . .
Lagrmges 9% TR Newions X X Implicit differentiation
notation Leibnizs notation notation
\ notation J
p Qi Jte) - f this limit does exist, we say that f is differentiable at x. Implicit differentiation is used to compute
If the derivative f'(c) exists at the point c, then f is dy/dx when x and y are related by an
Ay continuous function at point c. equation.

Step 1. Take the derivative of both sides of
the equation with respect to x.

Step 2. Solve for y' by collecting the terms
involving y’ on one side and the remaining
terms on the other side of the equation.
Remember to include the factor dy/dx when
differentiating expressions involving y with

respect to x.

| Related rate problems ]

. Theequation of the tangent line at point x,:
(sec x)' =sec x tan x Y= Yo =My (X—X,)
(CSC X), — _CSC X cot X ——— ,(XO) Thrfe wa_)isforf?ot to be diffizrentiable atc
: / “ o ’(’ — Vs ‘ / “1
Differentiation rules  |€—— U
Acorner  Adiscontinuity A vertical tangent
' ' l
(f+g)="1"+g < An acceleration >
’ ' ’ . - - -
( f — g) — f —_ g V(t) _ S'(t) _ % - the first derivative of the position function represents the

(f-g) ="fg"+gof’
1 :gfr_fgl

2

9 9

instantaneous velocity of the object as a function of time

2
a(t) =Vv'(t) = ﬂ _ d’s =s"(t) - the instantaneous rate of change of velocity
dt  dt? with respect to time is called the acceleration
- the formula of the position function (in feet) for an object which
t) =s, +V,t —16t>
S( ) So 0 6 is thrown straight upward (or downward) in the gravity field.

The goal is to calculate an unknown rate of
change in terms of other rates of change that
are known. This will usually require implicit
differentiation.

Algorithm:

Step 1. Assign variables and restate the
problem.

Step 2. Find an equation that relates the
variables and differentiate.

Step 3. Use the given data to find the
unknown derivative.

The composite functions

The Differential

—(

Linear approximation ]

(F(9(x))" = f'(9(x))-9'(x)
The derivative of a composite
function is the derivative of the
outer function evaluated at the
inner function, times the

derivative of the inner function

If the derivative of function f (x) at the point x is f '(x), we
define the differential of the function f (x) by df (x) such as
dy = f'(x)dx oo
e
The differential dx represents an infinitely small change in g
the variable x. u vdu —udv
dk =0, k = const du+v)=du+dv 94,5z
d(ku) =kdu, k=const d(uv)=udv+vdu d(u")=nu""du

Assume that f is differentiable at x = a. If x is
close to a, then
L(x)= f'(a)(x—a)+ f(a)

is the linearization of f at x = a. The Linear

Approximation can be rewritten as the

estimate f (x) = L(x) for small |x —a.
f(X+AX) = f(X)+dy = f(x)+ f'(X)Ax

- a good approximation for finding roots and

powers of the numbers.




3.1. Maxima and Minima

C(t)
mg/ml * A physician must determine the maximum drug
0.002 + . . . ,
\ concentration in a patient’s bloodstream when a drug
kY
0.001 1 Maximum is administered.
' concentration
e This amounts to finding the highest point on the graph

> 4 6 8 10 of C(t), the concentration at time t.
t (Hours)

C(t) = drug concentration in bloodstream

Some of the most important applications of differential calculus are optimization problems,

in which we are required to find the optimal (best) way of doing something:

What is the shape of a can that minimizes manufacturing costs?

What is the maximum acceleration of a space shuttle? (This is an important question to the
astronauts who have to withstand the effects of acceleration).

What is the radius of a contracted windpipe that expels air most rapidly during a cough?

At what price should a business sell its products in order to maximize revenue?



3.1. Maxima and Minima
Def. Maxima and minima

Let S, the domain of f, contain the point c. We say that

1. f (c) is the maximum value of fonSiff(c)>f(x) forall xinS;

2. f(c) is the minimum value of fonSiff(c)< f(x) forall xin S;

3. f(c) is an extreme value (extremum) of fon S if it is either the maximum value
or the minimum value;

4. the function we want to maximize or minimize is the objective function.

—Maximum 5 | _Nota 5-- (2.5 ¢ Maximum
maximum

) =x2+1 4
3__

\2:’
< < Nota

) —— Minimum (0, 17— Minimum  minimum
I
1

) =x*+1

2 i
v ) x*+1, x20
g(x) {2. 2D

| X

) X [ 1 ] T
] ! L J
2 1 2

3

R {
2 3 -1

et

3 p—

fis continuous, [-1, 2] is closed. fis continuous, (-1, 2) is open. g is not continuous, [-1, 2] is closed.



3.1. Maxima and Minima

Theorem A. Max-Min Existence Theorem (Extreme Value Theorem)
If f is continuous on a closed interval [a,b], then f attains both a maximum value

and a minimum value there.

3 ) Ya
T T
e |\/ g /| N
| | I |
| I | | | |
, | L, o , | | . N I .
0 a ¢ db x 0 a ¢ d=b x Of a ¢ d ¢ b X
v y y
: ] : — Max on [a. b]
3t [ fo i h(x)
g(x) | |
~ | | |
= * L )| .
Y ¥
a| 1 b
I+ :r : Min on [a, b]
| | .
T T T X | | X
a c b a b

h(x) is continuous énd [a, b] is closed.
Therefore, h(x) has a min and max on [a, b].

g(x) is discontinuous and has
no max on [a, b].

f (x) has no min or max on
the open interval (a, b).

y __ maximum

\/alue (d) 7
3 ¥4
,. y=x
L~ _\. \\ J."I

[ minimum
-ﬂ‘”'{ valye f(a)

a 0] b c d e X

maximum

VA

3_

- P
/
/
/1
\
| : >

0

This function has minimum value
f (2)=0, but no maximum value.

y
III |

Y

0

X

This continuous function g
has no maximum or
minimum.

—15 -
no_ _ 0 X
minimum,
no .. .

Minimum value 0, no maximum



3.1. Maxima and Minima
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A

\ AN
& “ e
LA

AY A

@

> Y

Tt \/
End points Stationary poimnts Sigular points
Extrema can occur at endpoints of If ¢ is a point at which f (c) =0, If ¢ is an interior point of an interval where f’
an interval. we call ¢ a stationary point. fails to exist, we call ¢ a singular point.

Def. Critical point

Let f be defined atc. If f'(c) =0 or if f is not differentiable at c, then c is a critical

point of f.

f’(c) does not exist.

Horizontal
tangent

/.
N

c is a critical point of f

|
|
|
|
|
|
|
|
|
|
|
|
|
|
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3.1. Maxima and Minima
Theorem B. Critical Point Theorem (Fermat’s Theorem)

Let f be defined on an interval | containing the point c. If f (c) is an extreme
value, then ¢ must be a critical point; that is, either c is an end point of | or

a stationary point of f or a singular point of f.

GUIDELINES FOR FINDING EXTREMA ON A CLOSED INTERVAL
To find the extrema of a continuous function f on /N )

a closed interval [a, b], use the following steps.

a c b

1. Find the critical points of f in (a, b).

2. Evaluate f at each critical point in (a, b).
3. Evaluate f at each endpoint of [a, b].

4. The least of these values is the minimum.

The greatest is the maximum.



3.2. Monotonicity and Concavity
Def. Increasing / Decreasing behavior of functions

Let f be defined on an interval | (open, closed, or neither). We say that
f is increasing on | if, for every pair of numbers x, and x, in I,
X, <X, = T(X) < T(X)
f is decreasing on | if, for every pair of numbers x, and x, in I,
X <X, = T(x)>T(X)

f is strictly monotonic on | if it is either increasing on | or decreasing on 1.

Increasing function Decreasing function
Tangent lines have positive slope. Tangent lines have negative slope.



3.2. Monotonicity and Concavity
Theorem A. Monotonicity Theorem

Let f be continuous on an interval | and differentiable at every interior point of I.
We say that
If f'(x) >0 forall xinterior to 1, then fis increasing on I. y

If f'(x) <0 forall xinterior to 1, then f is decreasing on I. S N

1
o VARRBREREA
[ increasing N\
' y oo / T & Stnw
/ 6 2 6
' | |
, | |
| |

f decreasing
\\\\

-/
_]\\J / i

H_J(_]fraph of f(x)

4

' Graph of f'(x)

f'>0

/1 x 0

A



3.2. Monotonicity and Concavity
Def. Concavity

Let f be differentiable on an open interval I. We say that
f (as well as its graph) is concave up on | if f " is increasing on |I.

f (as well as its graph) is concave down on I if f" is decreasing on I.

y

NP AN \/

Concave up

|
0| a
a curve is called concave up if it bends up | cD cu CD cu cU
\ / ~
& /
/ \
- / \
Concave down
Concave up: Concave down:
Slopes of tangent lines Slopes of tangent lines

a curve is called concave down if it bends down are increasing. are decreasing.



3.2. Monotonicity and Concavity
Theorem B. Concavity Theorem

Let f be twice differentiable on the open interval I.
If f"(x)>0forallxin I, then fis concave up on I.
If £"(x) <0 forall xin I, then f is concave down on |.

Concave Concave Concave
down up down
.

(=

fx)=cos x

First Derivative Second Derivative

"= 0= fisincreasing f” = 0= f is concave up
f’ < 0= fisdecreasing f” < 0= f isconcave down

f"(x)=—cos x




3.2. Monotonicity and Concavity
We say that P = (c, f (c)) is a point of inflection of f (x) if the concavity changes

from up to down or vice versa at x = c. In other words, f'(x) is increasing on one

side of x = ¢ and decreasing on the other.

r =

Concave down Concave up

Theorem. Test for Inflection Points
If f""(c)=0 and f"(Xx)changes sign at c,

then c is a point of inflection.

Points where f”(X) =0 or where f”(X) does not exist are

the candidate for the points of inflection.

y

No point of , f(x)
inflection ™ i
! o
i) / /w]\ / ’)
/ Point ofi J

|
inflection i
|

I Py
-2 - —;//
f"(x) does not

change sign

+— Point of

inflection




3.3. Local and Global Extrema
Def. Maxima and minima

Let S, the domain of f, contain the point c. We say that

1. f (c) is the global (absolute) maximum of fon Siff(c)>f(x) forall xinS;

2. f(c) is the global (absolute) minimum of fon Siff(c) < f(x) forall x in S;

3. f(c) is an global (absolute) extremum of fon S if it is either the maximum value

or the minimum value. y

Absolute maximum
(and a local maximum)

Local
maximum

Local
maximum

Local

Local minimum
minimum

The absolute maximum is the highest of the
Absolute mixllil_’num IocaI Mmaxima;
(and a local minimum)  the gbsolute minimum is the lowest of the

a ¥ S b local minima.

Local
minimum



3.3. Local and Global Extrema
Def. Maxima and minima

Let S, the domain of f, contain the point c. We say that

1. f (c) is a local (relative) maximum of f if there is an interval (a, b) containing c such that f
(c) is the maximum value of f on (a, b) N S; (the symbol N denotes the intersection (common
part) of two sets)

2. T (c) is a local (relative) minimum of f if there is an interval (a, b) containing ¢ such that f
(c) is the minimum value of f on (a, b) N S;

3. f(c) is a local (relative) extremum of f if itis either a local maximum value or a local

minimum value. \ /
\ / /N /N
\ 7T : / \ / -
y y .- L V
\ Absolute max on [a. b] y=fx) _, , , , ;
\'a Local / \ (a, f(a)) ;’; a c b a ¢
\1 "m fla) 4 i__le_i Local max / Tangent line is horizontal ~ This local minimum
\ Local Local [ - (e, fle) / at the local extrema. occurs at a point where

ml n .—-— min o4 | \\\ / the function is not
\\ )4___ | L\ | differentiable.
e 4 NG |

|
|
|
C a c b




3.3. Local and Global Extrema
Theorem A. First Derivative Test

Let f be continuous on an open interval (a, b) that contains a critical point c.

1. 1f f'(x)>0 forall xin (a, c) and f'(x) <0 forall xin (c, b), then f (c) is a local maximum of f.
2.1f f'(x)<0 forall xin (a, ¢) and f'(x) >0 forall xin (c, b), then f (c) is a local minimum of f.
3. If f'(x) has the same sign on both sides of c, then f (c) is not a local extreme value of f.

Y F(r)=x3—27x =20 Y O

local max / ;
-3 .
// Neither a local

local min / ¢

N\

AN ~

f'(x) changes [f'(x) changes f'(x) does not
from + to — from — to + change sign

) =3x2-27

Sign Change of /" atc  Type of Critical Point If f’does not change sign at c, then f has
From + to — Local maximum no local maximum or minimum at c.

From — to + Local minimum




3.3. Local and Global Extrema
Theorem B. Second Derivative Test

Let f'(x)and f"(X) exist at every point in an open interval (a, b) containing ¢, and suppose that f’(c) = 0.

1. If £"(c) <0, then f (c) is a local maximum of f. Yy f'o)<0 Yy o f©>0

2. 1f £"(c) > 0, then f (c) is a local minimum of f. y = )

Points of inflection
\ . .
/ \ y=r®  Inflection points of f
! | x | X
I occur where f (X) ] :
| | has a local min or
: : Concave down—Ilocal max Concave up—Ilocal min
, | X MaX
| } Concavity determines whether the critical point is a local
y | | minimum or maximum.
| Local |
I max | g )
BT R !
|~ : local max
/”'i"‘\ . x (f"<0)
~ : _ !
[ T oacae| / —
: : i — f(c) 1s a local maximum if f"(c) < 0.
| | ! : - e
! — f(c) is a local minimum if f"(c) > 0.
| | y=F"(x) V2 | / e !
| | 5 I X — The test fails if f"(c) = 0.
- "
| | local min
\ . (f"=0)

f" changes sign



3.4. Optimization Problems

Some of the most important applications of differential calculus are optimization problems, in which
we are required to find the optimal (best) way of doing something.
STEPS IN SOLVING OPTIMIZATION PROBLEMS
1. Understand the Problem The first step is to read the problem carefully until it is
clearly understood. Ask yourself: What is the unknown? What are the given quantities?
What are the given conditions?

2. Draw a Diagram In most problems it is useful to draw a diagram and identify the
given and required quantities on the diagram.

3. Introduce Notation Assign a symbol to the quantity that is to be maximized or
minimized (let’s call it Q for now). Also select symbols (a, b, c, . . ., X, y) for other
unknown quantities and label the diagram with these symbols. It may help to use
initials as suggestive symbols—for example, A for area, h for height, t for time.

4. Express Q in terms of some of the other symbols from Step 3.

5. If Q has been expressed as a function of more than one variable in Step 4, use the

given information to find relationships (in the form of equations) among these

variables. Then use these equations to eliminate all but one of the variables in the

expression for Q. Thus Q will be expressed as a function of one variable X, say, Q = f (x). Write the
domain of this function.

6. Use the theorems (the first and the second derivatives tests) to find the maximum or minimum
value of f.



3.4. Optimization Problems

Step 1. Choose variables

Step 2. Find the function
and the interval

Step 3. Optimize the
function




3.4. Optimization Problems
1. Geometrical example (maximizing area)

A piece of wire of length L is bent into the shape of .
a rectangle. Which dimensions produce the
rectangle of maximum area?

=

Step 1. Choose variables

If the rectangle has sides of length x and y, then its area is A = xy.

Since A depends on two variables x and y, we cannot find the maximum until we eliminate one
of the variables.

The perimeter of the rectangleis L and 2x + 2y =L — we cangety =L/2 — X

An equation relating two or more variables in an optimization problem is called a “constraint

equation.”’

Step 2. Find the function and the interval

A(X) = X(L - Xj _ (ij 2 Over which interval does the optimization take place?
x>0 the sides of the rectangle cannot have negative

0<x<L/2 L/2—-x>0 length

Step 3. Optimize the function
Our problem reduces to finding the maximum of A (x) on the closed interval [0, L/2].

Solving 4’ (x) = L/2—2x =0, we find that x = L/4 is the critical point.

End points: A(0)=0 Critical point: The largest area occurs for x=L/4and y = 57 X= > a2

A(L] L(L Lj . A(Lj L(L Lj 12 The rectangle of maximum area is the square of
L Y R =357 %

2) " 2\2 2 4) 4l2 a4 sides x =y = L/4.



3.4. Optimization Problems
2. Physical example (minimizing time)
Cowboy Clint wants to build a dirt road from his ranch to the o
highway so that he can drive to the city in the shortest amount  Rranch
of time. The perpendicular distance from the ranch to the
highway is 4 miles, and the city is located 9 miles down the .
highway. Where should Clint join the dirt road to the highway if Pl
the speed limit is 20 mph on the dirt road and 55 mph on the = 0 _x
highway? 9

.)ﬁﬂﬁ

City

Step 1. Choose variables

We need to decide where the dirt road should join the highway.

Let x be the distance from P (the point on the highway nearest the ranch) to the point where
the dirt road joins the highway.

We need to compute the travel time T (x) of the trip as a function of x.

By the Pythagorean Theorem, the length of the dirt road isv4* +x°

The time required to travel a distance d at constant velocity v is t = d/v.

Applying this with v = 20 mph

V4% + x?
20
The strip of highway has length 9 — x. At a speed of 55 mph, it will take

hours to traverse the dirt road

95_—5)( hours to traverse the strip of highway



3.4. Optimization Problems . tous

Step 2. Find the function and the interval 0,4_/

The total number of hours for the trip is

2 —_
T(X)Z\/16+x +9 X | | -
20 55 1.56 5 9 10

x (miles)

Graph of time of trip as function of x.

0.2+

Over which interval does the optimization take place?
Since the dirt road joins the highway somewhere between P and the city, we have 0 < x<9.

Step 3. Optimize the function

Our problem is to find the minimum of T (x) on [0, 9].

X 1
——=0  55x=2016+ x>

20416+ x> 55
11X = 4+/16 + X2

121x% =16(16 + x°)

We solve T '(x) = 0 to find the critical points: T'(x) =

Thus, x=16/+/105 ~1.56 miles.

To find the minimum value of T (x), we compute T (x)
at the critical point and endpoints of [0, 9]:
T(0)~0.36 h

@50~ 0>

T(9)~0.49 h the highway at a distance x = 1.56 miles from P.

We conclude that the travel time is minimized if the dirt road joins




3.4. Optimization Problems
2. Economical example (minimizing cost) QT —

A cylindrical can is to be made to hold 1 L of oil. Find the
dimensions that will minimize the cost of the metal to i h
manufacture the can.

Step 1. Choose variables :

Area 2(mr7) Area (27r)h

r is the radius and h the height (both in centimeters).

In order to minimize the cost of the metal, we minimize the total surface area of the cylinder
(top, bottom, and sides).

The sides are made from a rectangular sheet with dimensions 2z and h.

So the surface area is A=2ar? +2arh

To eliminate h we use the fact that the volume is given as 1 L, which we take to be 1000 cm?.

ar’h=1000 which gives h =1000/(ar?). Substitution of this into the expression A for gives

A=2nr%+ Zm(loOOj _ o2 2000

ar’ r



3.4. Optimization Problems

Step 2. Find the function and the interval YA
Therefore the function that we want to minimize is |
, 2000 /
A=2xar +T, r>0 1000+ | ),a‘j y=Alr)

\_
Since the domain of A is(0;).

We can t use the argument concerning endpoints. , >
Step 3. Optimize the function 0 10 '
To find the critical numbers, we differentiate:

2000 4(7zr3 —500)

r2 r2

A(r)=4rr —

Then A'(r) =0 when 7" =500 5o the only critical number is I =3/500/ 7.

We can observe that A'(r) <0 for r<3/500/7 and A'(r) >0 for r >3/500/ =
So A is decreasing for all r to the left of the critical number and increasing for all r to the right.
T

. . 1000 1000 500
r =3/500/7 must give rise to an absolute minimum. h= = 3— =2r

a?  z(500/ )?'?
To minimize the cost of the can, the radius should be approximately 5.42 cm and the height

should be equal to twice the radius, namely, the diameter.



3.5. Graphing Functions

When sketching the graph y = f (x) of a function f, we have three sources of useful information:

1.

the function f itself, from which we determine the coordinates of some points on the graph, the

symmetry of the graph, and any asymptotes;

2. the first derivative, f’, from which we determine the intervals of increase and decrease and the

location of any local extreme values; and

3. the second derivative, f'’, from which we determine the concavity and inflection points, and

sometimes extreme values.

rr + -
Concave Concave ) i
I up down ',I -4 1 +4+ ] +- —— =4 ++ |

S
1)
I - I|
++ ! [
+ \ |
. i ._,.-—ll'—-.___ !
[ncreasing - \ - o
% / xl.__ #
'._ H'\-._ I
-
— + '\-_|P_.'
Decreasing -

We pay particular attention to the transition
Most graphs are made up of smaller arcs that have oints. where the basic shape chanees due to a
one of the four basic shapes, corresponding to the P ’ o , be chang ’"
four possible sign combinations of f'and f "’ sign change in either £ {local min or max) or f

' (point of inflection).




3.5. Graphing Functions

Def. Vertical Asymptote (recall!)
The linex =c is called a vertical asymptote of the curvey = f(x) if at least one of the following
statements is true:

yi ¥ ¥ al.

Ny 1 /
/ cl o] ¢ \x 0 \a x ol (J X

lim f(Xx)=o0 lim f(x) = lim f(Xx)=—c0 lim f(x)=—o0

=y

i = im f(x) =2 d
\ ,//\ / /'N 2 y=2
v=flx

— 0
0/ c? x ‘c *
N\ \ /<f —

| N o —mimot

Example /HD

lim f(x)=o0 lim f(X)=—o0

X—C X—>C

Def. Horizontal Asymptote (recall!
The liney=b is called a hori asymptote of the curvey = f(x) if
either

im f(x)=b or XIinr_l f(x)=Db

X—0



3.5. Graphing Functions

Def. Oblique Asymptote

The straight line y=ax+b (where a # 0) is an oblique asymptote of the graph

of y= f(x) if either

XIi%rr_1oo(f(x)—(ax+b)):O or 1ig1w(f(x)—(ax+b))=0, or both.

|
Y4 y:x—|——
X

Va

LT

It can happen that the graph of a function f approaches a nonhorizontal
straight line as x approaches o or -0 (or both).

f(x)

a=Iim —=

b= I

—>

X—>+o0 X

irrloo[ f (x) —ax]

l

y=ax+Db




3.5. Graphing Functions

Polynomial function. Sketch the graph of f (x) = L Ly _oxys,
Step 1. Precalculus analysis 3 2
a) The domain : x - any real numbers.

b) Symmetry: this function is neither even nor odd, so we do not have any of the usual symmetries.
c) The intercepts: the y-intercept f (0) =3, when x =0.

Step 2. Calculus analysis
a) The first derivative: set the derivative equal to zero to find the critical points:

f'(x) =x*>—x—2=(x+1)(x—2)=0. The critical points ¢ = —1, 2 divide the x-axis into intervals
(—0,~1), (-1, 2), and (2,%0):

Interval Test Value | Sign of [’
(—oo,—1) | ff(=2)=4 +
(-1.2) | f[O)=-2 -
(2, 00) (3 =4 +

b) The second derivative: set the second derivative equal to zero and solve:

f"(x)=2x—-1=0. It hasthe solution ¢ =% and the sign of the second derivative is as follows:
Interval Test Value | Sign of f”
{_'mr’_!.fJ f”LU] = —1 —
{%.oc-} My =1 +




3.5. Graphin% Fur}ctions

Polynomial function. Sketch the graph of f (x) = 3 x> - X° —2x+3.

Step 2. Calculus analysis
c¢) Note transition points and sign combinations:

There are three transition points:

¢ = —1: local max since f ' changes from + to —atc=—1.
c = %2: point of inflection since f " changes sign at ¢ = %2.

c = 2: local min since f' changes from — to + at ¢ = 2.

Step 3. Plot a few points  Step 4. Sketch the graph

+— — —+ ++
+- - -+ ++ ¥ :
- |

{_ 1. %] T / \ IIIII
34 3 \
4 nl"%" ﬁ:' III,"ll T \ III}'I)

Notice that the graph of our cubic is built out of four arcs, each |
with the appropriate increase/decrease and concavity behavior

ST R ++
i } i i x
0N N
]
Local “ Inflection Local
max point min

It is necessary to compute y-values at these

points:
f(—-1)=25/6; T(1/2)=23/12; f(2)=—-1/3.

.'/ "/
/ |

y |
|

/
.'I|I I'III
/ /
f
— //
— A v e




3.5. Graphing Functilons
Trigonometric function. Sketch the graph of f (x) = cos x+§x over the interval [0,x].

Step 1. Precalculus analysis
a) The domain : x in [0,x].
b) Symmetry: this function is neither even nor odd, so we do not have any of the usual symmetries.
c) The intercepts: the y-intercept f (0) =1, when x =0.

Interval Test Value Sign of f’
Step 2. Calculus analysis . . ©F) | f'({5) ~024 +
a) The first derivative: f'(x) = —sin x+§=0:> x=%, % EB | rE--1 -
End poiffs— [ FE(D| /()02 |+

b) The second derivative: f"(x)=—cosx=0= x= %

Interval Test Value Sign of f” o ] ] ] ]
@r) (5= 2 c¢) Note transition points and sign combinations:
2z i =7"2 o
. = There are three transition points:
EONCH=F | + P
N\ End points ¢ = n/6: local max since ' changes from +to —atc =n/6 .
Step 3,4. Sketch the graph ¢ = n/2: point of inflection since f " changes sign at ¢ = 7/2.
1+=1 —= —+ | ++

¢ = 5n/6: local min since f ' changes from — to + at ¢ = 5n/6.

P
4l
GJ;I | // It is necessary to compute y-values at these points:

f(n/6) = 1.13; f(n/2)=0.79; f(5n/6)=0.44; f(m)=0.57.

o |y
3 |
Lh
£ ]
T



3.5. Graphlng Functions

Rational function. Sketch the graph of f(x)=

Step 1. Precalculus analysis
a) The domain : all x except 0.
b) Symmetry: none obvious (y is neither odd nor even).

c) The intercepts: none. x> +2x+4 = (x+1)* +3> 3 for all x,
Step 2. Calculus analysis

NG +2x+4

X

X2 +2X+4

f="

+1+g
X

and y is not defined at x=0.
Stationary point

1 2 X2 4 Statlonary pom@ Smgm
a) The first derivative: f'(X)== >
2 x? 2X ; def 0
4 y unde - 4
b) The second derivative: f"(X) =3 v - ~ | undef |+ +
" =0 nowhere; " undefined at x =0. y A max N\, \undef [N\, min

c¢) Note transition points and sign combinations:

— — R —

There are three transition points:

¢ =—2: local max since f ' changes from + to — at ¢ = —2.

¢ = 2: local min since f’ changes from — to + at ¢ = 2.
d) Asymptotes:

: . XP4+2x+4
Vertical asymptote: x =0, IX'TO—

2X

=00
Horizontal asymptote: DNE

X
igue asymptote: Y=§+1
2
)= im —=0

Obli
X—>to00 X—>to0o X

e ax +b

Step 3,4. Sketch the graph

no point of inflection, f” crﬁrﬁes signat0, but f” DNE at 0

It is necessary to compute y-values at these points:
f(-2)=-1; f(2)=3.

¥

G e B x




3.5. Graphing Functions

a) Domain
b) Symmetry
c) Intercepts

a) The first derivative
b) The second derivative

c) Transition points and sign combinations
d) Asymptotes




3.6. The Mean Value Theorem for Derivatives

Slope f'(c)

Consider the secant line through points (a, f (a)) and (b, f (b)) on a graph.

You can see there exists at least one tangent line that is parallel to the secant ?(';‘]pf .
line in the interval (a, b). L e
a ¢ b T~
Because two lines are parallel if they have the same slope, what the Mean fb)- f(a)
, —f(a
Value Theorem claims is that there exists a point ¢ between a and b such that f'c) = b_a

Slopeof tangentline

v -
Slopeof secantline

Theorem A. Mean Value Theorem for Derivatives

If f is continuous on a closed interval [a, b] and differentiable on its interior (a, b), then there is at

least one number c in (a, b) where 7 Slope of tangent line = f"(c)
f(b)— f(a) ’
= 1'(c)
b—a

_— Tangent line

Secant line

or equivalently, where f(b)— f(a)= f'(c)(b—a) Y. 10)

To see that the Mean Value Theorem is plausible, imagine what
happens when the secant line is moved parallel to itself.




3.6. The Mean Value Theorem for Derivatives
Since f ' (c) is the slope of the tangent line at the point (c, f (c)), the Mean Value Theorem says that there is

at least one point P(c, f (c)) on the graph where the slope of the tangent line is the same as the slope of the

secant line AB. In other words, there is a point P where the tangent line is parallel to the secant line AB.

y y

~— . . 5
-_____k--_ P|_('.. fl_['.'] B(2,4)

Ala. fla)

B(b, fib)) 0 — (1. 1)

|
I
I
I
I
I
I
-

h X 0

Physical Interpretation: If we think of the difference quotient (f(b)— f(a))/(b—a) as the average
change in f over [a, b] and f'(c) as an instantaneous change, then the Mean Value Theorem says that

the instantaneous change at some interior point must equal the average change over the entire interval.

§
A

400 |- I
* If acar accelerating from zero takes 8 sec to go = 0k (8.352)
352 ft, its average velocity for the 8-sec interval is 3 ol
352/8= 44 ft/sec, or 30 mph. e
« At some point during the acceleration, the a 160 = At this point.
theorem says, the speedometer must read exactly 80 e e
30 mph. 0 111 é L 11 >t

Time (sec)



3.6. The Mean Value Theorem for Derivatives

Corollary 1. If '(x) =0 for all x in an interval (a, b), then f is constant on (a, b).

)

Functions with f’ = 0 are Constant f(x)=%x+1

Theorem B. (Corollary 2.)

If F'(x) =G’(X) for all xin an interval (a, b), then there is a constant C such that
F(x)=G(x)+C

for all x in (a, b).

Functions with the Same Derivative Differ by a Constant

y
I
C
C

a

v
X




3.7. Solving Equations Numerically
Newton’s Method

* Suppose the root that we are trying to find is labeled r. d
* We start with a first approximation x,, which is obtained by guessing, . S *—-"'”:____.T'
or from a rough sketch of the graph of f. ____..-;;:?5:"1 I
« Consider the tangent line L to the curve y = f (x) at the point (x,, f (X)) y= f“j/L i
and look at the x-intercept of L, labeled x,. /1,
*  The idea behind Newton's method is that the tangent line is close to 0L — 7 X2 X X

the curve and so its x-intercept, X,, is close to the x-intercept of the

curve (namely, the root r that we are seeking).

To find a formula for x, in terms of x, we use the fact that the slope of L is f '(x,), so its equation is

y— (%)= 1'(x)(%—X) The Mean Value Theorem
Since the x-intercept of L is x,, we set y =0 and obtain f(b)-f(a) £(c)
0— (%)= F'(x)(x,—x) b-a
If f'(x,) = O, we can solve this equation for x,:
)
2 M '
(%)

We use x, as a second approximation to r.



Newton’s Method -

3.7. Solving Equations Numerically

Next we repeat this procedure with x, replaced by x,, using the tangent

line at (x,, f (x,)). This gives a third approximation: Xy = X, — f(x,)
F'(x,)

If we keep repeating this process, we obtain a sequence of approximations

(xp, Flx,)) T':
4

X1, X2, X3, %4, .. |

In general, if the nth approximation is x, and T'(X,) # O,then the next

approximation is givenby  y _y _ f(x,)

n+1 n f ,(Xn)

I
I
I
I
I
I
X

Newton’s Method To find a numerical approximation to a root of f (x)=0:
Step 1. Choose initial guess x, (close to the desired root if possible).

Step 2. Generate successive approximations x; X, ... where

recursion formula or X =X — f (Xn)
1 1 !
iteration scheme f'(x,)

If the numbers x,, become closer and closer to r as becomes large, then we say that the sequence

converges to r and we write |im X =T

nN—oo

R



3.7. Solving Equations Numerically

» Although the sequence of successive approximations converges to the

desired root for functions, in certain circumstances the sequence may not

converge.

0

* You can see (figure) that x, is a worse approximation than x;. This is likely 57—

to be the case when /' (x,) is close to 0. It might even happen that an
approximation (such as x5 in figure) falls outside the domain of f.

* Then Newton’s method fails and a better initial approximation should be chosen.

How Many Iterations Are Required?

In practice, it is usually safe to assume that if x, and x
approximation x, is correct to these m places.

¥

A
4
\\ Xg

Zeroof fix)

Function has only one zero but the sequence
Newton iterates goes off to infinity.

agree to m decimal places, then the

-2
]

the geometry behind the first
step in Newton’s method



8.1. Indeterminate Forms of Type 0/0

Theorem A. U'Hopital’s Rule for forms of type 0/0
Suppose that lim f (x) =lim g(x) =0.
If Iximu[ f'(x)/g'(x)] exists in either the finite or infinite sense (i.e., if this

limit is a finite number or —co or +0), then

00 _p '

« L’Hopital’s Rule says that the limit of a quotient of functions is equal to
the limit of the quotient of their derivatives, provided that the given
conditions are satisfied.

* Notice that when using I’ Hopital’s Rule we differentiate the
numerator and denominator separately.

We do not use the Quotient Rule !!

» L’Hopital’s Rule is also valid for one-sided limits and for limits at

infinity or negative infinity.

The Granger Collection

GUILLAUME L’HOPITAL (1661-1704)

L'Hopital's Rule is named after the French
mathematician Guillaume Francois Antoine de
L'Hdpital. L'Hopital is credited with writing the
first text on differential calculus (in 1696) in
which the rule publicly appeared. It was
recently discovered that the rule and its proof
were written in a letter from John Bernoulli to

L'Hopital. “... | acknowledge that | owe very
much to the bright minds of the Bernoulli
brothers. ... | have made free use of their

discoveries ...," said L'Hopital.



8.1. Indeterminate Forms of Type 0/0

_}" F Y }: A

,-"';;—-
~"y=m,(x—a)

0 ﬁ"f/a . "

This figure suggests visually why I’"Hopital’s Rule might be true.

=Y

» The first graph shows two differentiable functions f and g, each of which approaches 0 as x—a. .
If we were to zoom in toward the point (a,0) , the graphs would start to look almost linear. But if

the functions actually were linear, as in the second graph, then their ratio would be
m(x—-a) m
m, (x-2a) m,

which is the ratio of their derivatives. This suggests that

jim 1) _ iy £
SR g(x) on g'(x)




Approximations and

Derivative
£/(x) = lim f(x+Ax)— f(Xx)

numerical calculations

Linear

gproximation >

Assume that f is differentiable at x = a. If x is close to a,
then L(x) = f'(a)(x—a)+ f(a)

is the linearization of f at x = a. The Linear
Approximation can be rewritten as the estimate f (x) =
L(x) for small [x — a|.

f(x+Ax) = f(x)+dy = f(x)+ f'(X)AX -agood
approximation for finding roots and powers of the
numbers.

C)/ving equatioD
numerically C=====

Newton’s Method: To find a numerical approximation
to a root of f(x)=0:

Iteration scheme :
Step 1. Choose initial guess x, (close to the desired root if
possible).
Step 2. Generate successive approximations x; X, ...
where

=X, — n

f'(x.)

n+l

(l—'inding limiD(

L’Haépital’s Rule says that the limit of a quotient of
functions is equal to the limit of the quotient of their
derivatives, provided that some conditions are satisfied.
jm 0 _ jm L)
XU g(x) x>u g (X)

Mean Value Theorem

f(b)- f(a Corollary: Functions
M = f'(c)| | with the Same Derivative
b-a Differ by a Constant

o o o o o e o ]

<

AX—0 AX

A 4

Graphing functions

( Monotonicity D

Let f be continuous on an interval | and differentiable at
every interior point of I. We say that

If f'(x)>0 for all xinterior to 1, then f is increasing on I.
If f'(x)<0 for all xinterior to I, then f is decreasing on I.

\ 4
< Concavity >

Let f be twice differentiable on the open interval I.
If £ (x)>0 for all xin I, then f is concave up on I.
If £ (x)<0 for all xin I, then f is concave down on I.

If f” (x)=0 and " (x) changes sign at ¢, thencisa
point of inflection.

< Extrema >

(First derivative test) Let f be continuous on an open
interval (a, b) that contains a critical point c.

>| Practical problems

Related rate
roblems

The goal is to calculate an unknown rate of change in
terms of other rates of change that are known. This will
usually require implicit differentiation.

Algorithm:
Step 1. Assign variables and restate the problem.

Step 2. Find an equation that relates the variables and
differentiate.

Step 3. Use the given data to find the unknown derivative

Optimization
roblems

We are required to find the optimal (best) way of doing
something. This will usually require extrema theorems.

Algorithm:
Step 1. Choose variables.
Step 2. Find the function and the interval.
Step 3. Optimize the function.

Differential
——————) equations

Antiderivative

________ ) a

r
If f'(x)>0 for all xin (a, ¢) and f '(x)<0 for all xin (c, b), | — - - -
then f (c) is a local maximum of f. 1 | Any equation in which the unknown is a function and that
) i 1 | involves derivatives of this unknown function.
If f'(x)<0 for all xin (a, ¢) and f '(x)>0 for all xin (c, b), 1 Algorithm:
then f (c) is ? Ios:al minimum of f. : Step 1. Choose variables.
(Second derivative test) Suppose that f '(c)=0. I | Step 2. Write the differential equation and separate
If f " (x)<0, then f (c) is a local maximum of f. : variables. )
If f (x)>0, then f (c) is a local minimum of f. 1 | Step 3. Evaluate the solution.
1
1
1 b n .
- o o :
[ £09dx = lim 3" f(x)Ax,
_______ > j f (x)dx = F(x)+C [P0 &

Definite Integral




3.8. Antiderivatives: introduction

Def. Antiderivatives

We call F an antiderivative of f on the interval | if D, F(x) =f (x) on |

that is, if F'(x) =f(x) forall xin 1.

We used the Mean Value Theorem to prove that if two functions have

identical derivatives on an interval, then they must differ by a constant.

Thus if F and G are any two antiderivatives of f, then F' (x) =f (x) = G’ (X)

So, G (x) — F (x) = C where is a constant. We can write this as

GX)=F((x)+C

Def. The General Antiderivative

If F is an antiderivative of f on an interval |, then the
most general antiderivative of f on Il is F (x) + C where

C is an arbitrary constant.

Members of the family of
antiderivatives of f (x) = x?

~Fx)+C

The tangent lines to the graphs of y = F(x) and y = F(x) + C are parallel.
Vertical shifting moves the tangent lines without changing their slopes.



3.8. Antiderivatives: introduction

Notation for Antiderivatives

The notation y = j f (x)dx = F(x) + C means that F is an antiderivative of f on an interval.
The operation of finding all antiderivatives for the function is called antidifferentiation (or

integration)

an antiderivative of f (x)

variable of integration

the integral sign

integrand (X) X :@+ C

The expression _[ f (x)dX is read as the antiderivative of f with respect to x.

\

constant of
integration

L

So, the differential dx serves to identify x as the variable of integration.

The term indefinite integral (as well as primitive function) is a synonym for antiderivative.



3.8. Antiderivatives: Basic Integration Rules

The inverse nature of integration and differentiation can be verified by substituting F’ (x) for

f (X) in the indefinite integration definition to obtain

jF’(x)dx: F(x)+C

Integration is the “inverse” of differentiation

Moreover, if Y = j f (X)dx = F(X)+C then differentiating both sides yields

D, j f (x)dx = f (X)

jdx:x+C

Differentiation is the “inverse” of integration



3.8. Antiderivatives: Basic Integration Rules

Differentiation Formulas Integration Formulas (Theorems A,B,C)

(kf)'=k- f’, k=const [kt (dx=k[ f(x)dx, k =const

the antiderivative of a constant times a function is the constant
times the antiderivative of the function (a constant multiplier can
be passed across indefinite integral)

(f+g)=f"+¢’ [T (0 +g00ldx= [ f(x)dx+ [ g(x)dx

(f-g)="f"-g JIT(0—=g001dx = [ £ (x)dx— [ g(x)dx

the antiderivative of a sum (difference) is the sum (difference) of
the antiderivatives

(sin X)' = cos X [[sin xdx=—cosx+C
(cos x)" = —sin X cosxdx=sin x+C
B . Xn+1
(Xn)’: nx"™ X"dx=——+4+C, n#1 Powerrule
. n+1

to integrate a power of x, we increase the exponent by 1 and
divide by the new exponent



3.8. Antiderivatives: Basic Integration Rules

Recall the chain rule as applied to a power of a function.

u=g(x) is a differentiable function and r is a rational number (r #-1)

D{Lﬂ}u“mu = D{[gﬁx)]m}:[g(x)]f ')

r+1 +1

Theorem D. Generalized Power Rule

Let g be a differentiable function and r is a rational number different from -1.
Then

o001 g'(iax =90 ¢
r+1

If we let u=g(x) then du = g’(x)dx

r+1

jurdu :U—+C, r«1
r+1



3.9. Intro to Differential Equations

Let’s antdifferentiate (integrate) a f function to obtain a new function F
j f (x)dx = F(x)+C
F'(X) = f (X) is equivalent (in differential notation) to dF (X) = f (X)dX

IdF(x):F(x)+C

We integrate the differential of a function to obtain the function (plus a constant)
A differential equation is any equation in which the unknown is a function and that
involves derivatives of this unknown function

e A function that, when substituted in the differential equation yields an equality, is called
a solution of the differential equation

* To solve a differential equation is to find an unknown function
* First-order separable differential equations are equations involving just the first

derivative of the unknown function and are such that the variables can be separated,
one on each side of the equation



3.9. Intro to Differential Equations

In many applications of integration, you are given enough information to

determine a particular solution. This information is called an initial condition.

d
—i =3x° -1 F(X) = Xx*—X+C  General solution
F(2) =4

Initial condition

F(2)=8-2+C=4 =C=-2 N

F(x)=x>—x-2

Particular condition

The particular solution that satisfies the initial condition F (2) =4 is
F(X)=x*—x-2

Motion Problems

v(t) =s'(t) = %

a(t) =Vv'(t) = %

F=x-x+C
s(t) = IV(t)dt Position is an antiderivative of velocity

v(t) = Ia(t)dt Velocity is an antiderivative of acceleration



