Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Новгородский государственный университет имени Ярослава Мудрого»

Институт электронных и информационных систем

Кафедра физики твердого тела и микроэлектроники

УТВЕРЖДАЮ Дироктор ИОИС, профессор С Даже С.И.Эминов

2017 г.

ПРОЦЕССЫ МИКРО- И НАНОТЕХНОЛОГИИ

Учебный модуль по направлению подготовки 11.03.04 — Электроника и наноэлектроника

Рабочая программа

Разработал

	The state of the s
Начальник учебного отдела	Профессор КФТТМ
О.Б.Широколобова	М.А.Захаров
« <u>30» 06</u> 2017 г.	« р б» <u>06</u> 2017 г.
	Принято на заседании КФТТМ
	Протокол № <u>//</u> от <u>05. 06</u> 2017 г
	Заведующий кафедрой
	Б.И.Селезнев

СОГЛАСОВАНО

1 Цели освоения учебного модуля

Цель учебного модуля (УМ) «Процессы микро- и нанотехнологии» – развитие компетентности студентов в области технологических процессов, протекающих при формировании микро- и наноразмерных структур и объектов, предназначенных для применений в микро- и наноэлектронике, приборостроении.

Основные задачи УМ:

В результате изучения УМ студенты должны:

- иметь представление об основных задачах, решаемых при разработке технологического процесса производства электронных приборов, и о путях их решения;
- знать обобщенный поэтапный состав технологического процесса производства электронных приборов;
- знать основные методы и приемы технологии производства приборов микро- и нанотехнологии, их общие принципы и сравнительные характеристики;
- иметь представление о математических моделях основных технологических процессов и уметь применять их для расчета параметров и режимов проведения этих процессов;
- иметь представление об основных тенденциях и перспективах развития отечественной и зарубежной технологии микро- и наноэлектронных приборов.

Ведущая идея УМ – изучение процессов микро- и нанотехнологии имеет фундаментальное значение для понимания и исследования свойств современных материалов электронной техники.

2 Место учебного модуля в структуре ОП направления подготовки

Учебный модуль «Процессы микро- и нанотехнологии» является модулем по выбору блока 1.

Изложение курса базируется на знаниях, полученных при изучении курсов «Физика», «Математика», «Физическая химия материалов и процессов электронной техники», «Квантовая механика и статистическая физика», «Основы проектирования и технологии электронной компонентной базы» и изучается в седьмом семестре.

В результате изучения предшествующих модулей и для изучения УМ «Процессы микрои нанотехнологии», обучающиеся должны:

знать: основные методы и приемы технологии материалов электронной техники, их сравнительные характеристики; связь параметров технологических процессов с выходными ха-

рактеристиками материала; основные методы получения монокристаллов и эпитаксиальных структур;

уметь: использовать основные модели процессов технологии полупроводниковых материалов для описания и прогнозирования протекания процессов в условиях производственной деятельности;

владеть: аппаратом дифференциального и интегрального исчислений, а также методиками решения типовых физических задач.

Знания и умения, полученные при изучении данного модуля, используются при подготовке выпускной квалификационной работы.

3 Требования к результатам освоения учебного модуля

Процесс изучения УМ направлен на формирование компетенции:

- ДПК-2 способность к организации и контролю технологического процесса выпуска изделий микроэлектроники.

В результате освоения УМ «Процессы микро- и нанотехнологии» студент должен знать, уметь и владеть:

Код компе- тенции	Уровень освоения компе-тенции	Знать	Уметь	Владеть
ДПК-2	базовый	Основные физические закономерности, лежащие в основе современных технологических процессов, основные технологические методы и приемы, физические основы методов их контроля, практические возможности конкретных технологических процессов для получения материалов и создания устройств микро- и наноэлектроники.	ских методов и приемов; разрабатывать технологические схемы производства ма-	Основными принци- пами построения тех- нологических про- цессов производства материалов микро- и наноэлектроники, иметь представление об основных направ- лениях развития про- цессов микро- и на- нотехнологий.

4 Структура и содержание учебного модуля

4.1 Трудоемкость учебного модуля

	Распределение по	Коды форми-
Учебная работа (УР)	семестрам	руемых компе-
	7 сем.	тенций
Трудоемкость дисциплины в зачет-	6	
ных единицах (ЗЕ)		
Распределение трудоемкости по ви-	216	
дам УР в академических часах (АЧ):		
- лекции	36	
- практические занятия	54	ДПК-2
- аудиторная СРС	18	дін 2
- внеаудиторная СРС	126	
Аттестация:		
- экзамен	36	

4.2 Содержание и структура разделов учебного модуля

Раздел 1. Введение

Предмет учебного модуля и его место в системе подготовки специалистов в области микроэлектроники. Задачи учебного модуля, обобщенная характеристика его разделов и связь с другими учебными модулями.

Краткая справка об истории развития микро- и наноразмерных электронных приборов и технологии их изготовления. Современное состояние технологии ис-следования и производства микро- и наноэлектронных приборов в России и за рубежом. Тенденции и перспективы развития технологии производства микро- и наноразмерных электронных приборов.

Организационно-технологические принципы, лежащие в основе разработки и производства микро- и наноразмерных приборов. Требования к производственным помещениям, оборудованию, персоналу и применяемым материалам. Производственная гигиена.

Общая классификация микро- и наноэлектронных приборов. Обобщенная поэтапная схема технологического процесса производства электронных приборов.

Раздел 2. Процессы технологии микроэлектронных приборов.

Классификация и рассмотрение процессов технологии микроэлектронных приборов: межоперационный контроль, диффузионное и ионное легирование, вакуумное напыление ме-

таллов и диэлектриков, оптическая, рентгеновская и электронная литография, химическая, температурная, оптическая и другие виды обработки полупроводника. Технологическое оборудование технологии микроэлектронных приборов. Автоматизация технологического процесса производства микро- и наноэлектронных приборов. Технологическая документация.

Методы математического моделирования процессов технологии микроэлектронных приборов - диффузии и ионной имплантации.

Технология производства гибридных и твердотельных интегральных микросхем, оптоэлектронных приборов и микроэлектронных приборов на основе полупроводниковых соединений и гетероструктур.

Технологические ограничения интеграции и миниатюризации микроэлектронных приборов.

Раздел 3. Процессы нанотехнологии.

Направления реализации наноэлектронных устройств. Обзор основных наноэлектронных приборов и структур: одноэлектронный транзистор, квантовая ячейка, атомарный переключатель, транзистор на основе резонансно-туннельного эффекта, нанотрубки и др.

Специфика технологии наноэлектронных приборов. Методы изготовления наноразмерных электронных структур: литография, молекулярно-лучевая эпитаксия, механический синтез с использованием наноразмерных зондов (сканирующая туннельная и атомная силовая микроскопия), хемосинтез.

Календарный план, наименование разделов учебного модуля с указанием трудоемкости по видам учебной работы представлены в технологической карте (приложение Б).

4.3 Организация изучения учебного модуля

Методические рекомендации по организации изучения учебного модуля с учетом использования в учебном процессе активных и интерактивных форм проведения учебных занятий даются в приложении A.

5 Контроль и оценка качества освоения учебного модуля

Контроль качества освоения студентами УМ и его составляющих осуществляется непрерывно в течение всего периода обучения с использованием балльно-рейтинговой системы (БРС), являющейся обязательной к использованию всеми структурными подразделениями университета.

Для оценки качества освоения УМ используются формы контроля: текущий – регулярно в течение всего семестра и семестровый (экзамен) – по окончании изучения УМ.

Максимальное количество баллов, получаемое на экзамене – 50. Максимальное количество баллов по модулю – 300. Пороговому уровню соответствует 150 баллов.

Оценка качества освоения модуля осуществляется с использованием фонда оценочных средств, разработанного для данного модуля, по всем формам контроля в соответствии с Положением «Об организации учебного процесса по образовательным программам высшего образования» и Положением «О фонде оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации студентов и итоговой аттестации выпускников».

В качестве оценочных средств на протяжении семестра используются: разноуровневые задачи, расчетно-графические задачи и экзамен. Содержание видов контроля и график отражены в технологической карте учебного модуля приложения Б. Паспорта компетенций представлены в приложении В.

6 Учебно-методическое и информационное обеспечение

Учебно-методическое и информационное обеспечение учебного модуля представлено Картой учебно-методического обеспечения (приложение Г).

7 Материально-техническое обеспечение учебного модуля

Для осуществления образовательного процесса по модулю используется лекционная аудитория, оборудованная мультимедийными средствами

Приложения (обязательные):

- А Методические рекомендации по организации изучения УМ
- Б Технологическая карта
- В Паспорта компетенций
- Г Карта учебно-методического обеспечения УМ

Приложение А

(обязательное)

Методические рекомендации по организации изучения учебного модуля «Процессы микро- и нанотехнологии»

Учебный модуль «Процессы микро- и нанотехнологии» состоит из взаимосвязанных разделов, по которым предусмотрены лекционные и практические занятия.

В таблице А.1 отражены разделы модуля, технологии и формы проведения занятий, задания по самостоятельной работе студента и ссылки на необходимую литературу.

А.1 Методические рекомендации по теоретической части учебного модуля

Теоретическая часть модуля направлена на формирование системы знаний об основных процессах микро- и нанотехнологии, методах их реализации для нужд микро- и наноэлектроники.

Основное содержание теоретической части излагается преподавателем на лекционных занятиях, а также усваивается студентом при знакомстве с дополнительной литературой, которая предназначена для более глубокого овладения знаниями основных дидактических единиц соответствующего раздела и указана в таблице A.1.

А.2 Методические рекомендации по практическим занятиям

Цель практических занятий – закрепление теоретического материала и выработка у студентов умения решать задачи по практическим аспектам УМ.

Практические занятия строятся следующим образом:

- 20% аудиторного времени отводится на объяснение решения типовой задачи у доски;
- 70% аудиторного времени самостоятельное решение задач студентами;
- 10% аудиторного времени в конце текущего занятия разбор типовых ошибок при решении задач.

Большинство задач содержится в фонде оценочных средств данного УМ (приложение А).

Конкретная форма проведения практических занятий указана в таблице А.1.

Пример расчетной задачи.

После механической обработки полированная кремниевая пластина на отдельных участ-ках имеет клиновидность \mathbf{k} (мкм/см). На её поверхность наложена плоская стеклянная пластина. При нормальном освещении монохроматическим светом с длиной волны λ в зазоре наблюдаются интерференционные полосы, расположенные на расстоянии \mathbf{l} одна от другой. Определите недостающие в таблице значения.

Вариант	k	λ	l
	мкм/см	MKM	СМ
1	?	0,45	0,1
2	?	0,47	0,2
3	?	0,5	0,3
4	?	0,55	0,4
5	?	0,6	0,5
6	?	0,65	0,6
7	?	0,45	0,6
8	?	0,47	0,5
9	?	0,5	0,4
10	?	0,55	0,3
11	?	0,6	0,2
12	?	0,65	0,1
13	0,2	0,45	?
14	0,3	0,47	?
15	0,4	0,5	?
16	0,5	0,55	?
17	0,6	0,6	?
18	0,7	0,65	?
19	0,8	0,45	?
20	0,9	0,47	?
21	1,0	0,5	?
22	1,1	0,55	?
23	1,2	0,6	?
24	1,3	0,65	?

А.3 Методические рекомендации по самостоятельной работе студентов

Для подготовки к практическим занятиям и экзамену рекомендуется пользоваться основной и дополнительной учебно-методической литературой, представленной в таблице A.1 и в карте учебно-методического обеспечения.

Для самостоятельной подготовки к экзамену предлагаются контрольные вопросы по УМ.

Вопросы к экзамену по учебному модулю «Процессы микро- и нанотехнологии»

- 1. Основные этапы и перспективы развития электроники.
- 2. Классификация ИС по их конструктивно-тенологическим признакам и по степени интеграции элементов.
- 3. Основные принципы разработки технологии ИС.
- 4. Требования, предъявляемые к качеству обработки пластин в планарной технологии.
- 5. Способы ориентации монокристаллических слитков.

- 6. Принципы механической обработки п/п материалов. Обработка свободным и связанным абразивами. Строение поверхностного слоя.
- 7. Способы резки слитков на пластины.
- 8. Шлифовка и полировка п/п пластин. Особенности химико-механической полировки.
- 9. Способы разделения пластины на кристаллы: скрайбирование, абразивная резка, химическое травление и др.
- 10. Химическое травление п/п. Полирующее, дифференциальное и анизотропное травление. Обобщенный состав травителя.
- 11. Электрохимическое травление п/п.
- 12. Ионное и плазмохимическое травление п/п.
- 13. Механизмы диффузии примесей в твердых телах. Коэффициент диффузии и причины, влияющие на его величину. Связь растворимости и скорости диффузии примесей.
- 14. Расчет глубины залегания р-п переходов, получаемых одностадийной и двухстадийной диффузией.
- 15. Методы осуществления процесса диффузии: в запаянной ампуле, в потоке газа-носителя, бокс метод, из поверхностных стекол, из легированных окислов, из слоя поликристаллического кремния.
- 16. Характеристики важнейших диффузантов, используемых в технологии планарных кремниевых приборов.
- 17. Ионное легирование п/п. Профиль торможения в аморфных мишенях. Проецированный пробег, дисперсия пробегов.
- 18. Распределение внедренных ионов в монокристаллах. Эффект каналирования.
- 19. Радиационные нарушения при ионном легировании. Отжиг дефектов. Радиционноуправляемая диффузия.
- 20.Особенности получения р-п переходов методом ионного легирования. Примеры использования ионного легирования в технологии п/п устройств.
- 21. Назначение и способы получения маскирующих слоев двуокиси кремния: термическое окисление, пиролиз, окисление силана, напыление. Свойства получаемых слоев.
- 22. Получение, свойства и использование в планарной технологии защитных слоев нитрида кремния.
- 23. Методы контроля толщины защитных диэлектрических слоев на поверхности полупроводниковых структур.
- 24. Фотолитография в производстве п/п приборов. Позитивные и негативные фоторезисты. Способ контактной фотолитографии.
- 25. Процесс изготовления фотошаблонов. Способы увеличения срока службы фотошаблонов.
- 26. Проекционная фотолитография в технологии п/п приборов.

- 27. Рентгенолитография в технологии п/п приборов.
- 28. Электронолитография в технологии п/п приборов.
- 29. Фотолитография в области коротковолнового ультрафиолета.
- 30. Изоляция элементов биполярных ИС с помощью р-п переходов. Методы разделительной диффузии, КИД, БИД.
- 31. Изоляция элементов ИС тонким диэлектрическим слоем на проводящей подложке. Эпик методы.
- 32. Гибридные методы изоляции элементов ИС. Изопланар, V-ATE, VIP.
- 33. Диэлектрическая изоляция элементов ИС. Методы КНД и КВД.
- 34. Технология пассивных элементов биполярных ИС.
- 35. Стандартная технология МДП транзисторов с каналами п- и р-типов. Недостатки стандартной технологии.
- 36. Технология МДП транзисторов с самосовмещающимися затворами. Кремниевые затворы, использование ионного легирования.
- 37. Технология МДП транзисторов с короткими каналами. Д-МОП и V-МОП приборы.
- 38. Пассивные элементы МДП ИС. Особенности МДП ИС.
- 39. Межэлементные соединения. Металлизация алюминием. Другие способы металлизации.
- 40. Сборка п/п приборов. Монтаж кристаллов в корпус, присоединение выводов, герметизация корпуса.
- 41. Групповые методы сборки п/п приборов с объемными выводами.
- 42. Физические основы метода вакуумной термической технологии. Испарение вещества, перенос паров, конденсация. Схема установки.

Пример экзаменационного билета

Министерство науки и образования Российской Федерации ФГБОУ ВО «Новгородский государственный университет имени Ярослава Мудрого» Институт электронных и информационных систем Кафедра физики твердого тела и микроэлектроники

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ

по учебному модулю

«Процессы микро- и нанотехнологии»

- 1. Основные принципы разработки технологии ИС.
- 2. Физические основы метода вакуумной термической технологии. Испарение вещества, перенос паров, конденсация. Схема установки.

3 Задача.

Определите клиновидность кремниевой пластины, если при наложении на ее поверхность плоской стеклянной пластины для нормально падающего света с длиной волны λ =0,5 мкм наблюдается пять интерференционных полос (N=5) на расстоянии Δ l=1см.

Зав. кафедрой ФТТМ

Б.И. Селезнев

Таблица А.1 - Организация изучения учебного модуля «Процессы микро- и нанотехнологии»

Раздел дисциплины	Технология и форма проведения занятий	Задания на СРС	Дополнительная литература и интернет-ресурсы
Раздел 1. Введение.	информационные лекции	изучение лекций	[1] Ю.М. Таиров, В.Ф. Цветков. Технология полупроводниковых и диэлектрических материалов: Учебник для вузов. 3-е изд., стер. – СПб.: Изд-во Лань, 2002. – 423 с.
Раздел 2. Процессы технологии микро- электронных приборов.	информационные лекциирешение задач с обсуждением результатов	решать задачи (ауд.СРС)изучение лекций	[1] Ю.М. Таиров, В.Ф. Цветков. Технология полупроводниковых и диэлектрических материалов: Учебник для вузов. 3-е изд., стер. – СПб.: Изд-во Лань, 2002. – 423 с. [2] Антипов Б. Л. Материалы электронной техники: Задачи и вопросы: учеб. для студентов вузов 3-е изд., стер СПб.; М.; Краснодар: Лань, 2003 206,[1]с.
Раздел 3. Процессы нанотехнологии.	информационные лекциирешение задач с обсуждением результатов	решать задачи (ауд. CPC)изучение лекций	[1] Ю.М. Таиров, В.Ф. Цветков. Технология полупроводниковых и диэлектрических материалов: Учебник для вузов. 3-е изд., стер. – СПб.: Изд-во Лань, 2002. – 423 с. [2] Антипов Б. Л. Материалы электронной техники: Задачи и вопросы: учеб. для студентов вузов 3-е изд., стер СПб.; М.; Краснодар: Лань, 2003 206,[1]с.

Приложение Б

(обязательное)

Технологическая карта

Учебного модуля «Процессы микро- и нанотехнологии»

семестр – $\underline{7}$, 3E – $\underline{6}$, вид аттестации – $\underline{$ экзамен, акад. часов – $\underline{216}$, баллов рейтинга – $\underline{300}$

Номер и наименование раздела		Трудоемкость, ак.час			ть, ак.ча	С	Форма текущего контроля	Максим.
		Ay	Аудиторные занятия				успеваемости	кол-во бал-
дисциплины, КП/КР	сем.	ЛЕК	ПЗ	ЛР	ACPC	CPC	(в соответствии с паспортом ФОС)	лов рейтинга
Раздел 1. Введение.	1-2	4				6		
Раздел 2. Процессы технологии микроэлектронных	иных 3-10 16 27 8 60 L		27 8	27 8	27	разноуровневые задачи	4 х 15 б.	
приборов.	3 10		2,		o o		расчетно-графическая задача	1 х 50 б.
Раздел 3. Процессы нанотехнологии.	11-18	16	27		10	60	разноуровневые задачи	6 х 15 б.
т аздел э. процессы папотехнологии.	11-10	10	21		10	00	расчетно-графическая задача	1х 50 б.
Экзамен						36		50
Итого:		36	54		18	216		300

Критерии оценки качества освоения студентами учебного модуля:

- «удовлетворительно» от 150 до 209 баллов;
- «хорошо» от 210 до 269 баллов;
- «отлично» от 270 до 300 баллов.

Приложение В (обязательное)

Паспорта компетенций

ДПК-2 способность к организации и контролю технологического процесса выпуска изделий микроэлектроники

	1	хнологического процесса выпуска изделий микроэлектроники				
Уро	Показатели		Оценочная шкала			
вни		удовлетворительно	хорошо	отлично		
вень	Знает основные физические закономерности, лежащие в основе современных технологических процессов, основные технологические методы и приемы, физические основы методов их контроля, практические возможности конкретных технологических процессов для получения материалов и создания устройств микро- и наноэлектроники.	Испытывает трудности в понимании основных физических закономерностей, лежащие в основе современных технологических процессов, основных технологических методов и приемов, физических основ методов их контроля, практических возможностей конкретных технологических процессов для получения материалов и создания устройств микро- и наноэлектроники.	Недостаточно четко понимает основные физические закономерности, лежащие в основе современных технологических процессов, основные технологические методы и приемы, физические основы методов их контроля, практические возможности конкретных технологических процессов для получения материалов и создания устройств микро- и наноэлектроники.	Ясно понимает основные физические закономерности, лежащие в основе современных технологических процессов, основные технологические методы и приемы, физические основы методов их контроля, практические возможности конкретных технологических процессов для получения материалов и создания устройств микро- и наноэлектроники.		
Базовый уровень	Умеет ориентироваться в многообразии современных технологических методов и приемов; разрабатывать технологические схемы производства материалов и устройств микро- и наноэлектроники; определять оптимальные режимы проведения отдельных технологических операций. Владеет основными принципами построения технологических процессов производства материалов микро- и наноэлектроники.	Испытывает трудности при использовании современных технологических методов и приемов; разработке технологических схем производства материалов и устройств микро- и наноэлектроники; определении оптимальных режимов проведения отдельных технологических операций. Испытывает трудности при использовании основных принципов построения технологических процессов производства материалов микро- и	Не всегда корректно использует современные технологические методы и приемы; разрабатывает технологические схемы производства материалов и устройств микро- и наноэлектроники; определяет оптимальные режимы проведения отдельных технологических операций. Недостаточно уверенно использует основные принципы построения технологических процессов производства материалов микро-	Способен в полной мере использовать современные технологические методы и приемы; разрабатывать технологические схемы производства материалов и устройств микро- и наноэлектроники; определять оптимальные режимы проведения отдельных технологических операций. Владеет основными принципами построения технологических процессов производства материалов микро- и наноэлектроники.		

Приложение Г (обязательное)

Карта учебно-методического обеспечения

УМ «Процессы микро- и нанотехнологии»

Направление (специальность) 11.03.04 — Электроника и наноэлектроника

Формы обучения очная

Курс <u>4</u> Семестр <u>7</u>

Часов: всего <u>216</u>, лекций <u>36</u>, практ. зан. <u>54</u>, лаб. раб. <u>-</u>, СРС <u>126</u>

Обеспечивающая кафедра ФТТМ

Таблица Г.1 - Обеспечение дисциплины учебными изданиями

Библиографическое описание издания (автор, наименование, вид, место и год издания, кол. стр.)	Кол. экз. в библ. НовГУ	Наличие в ЭБС
Учебники и учебные пособия		
1. Введение в процессы интегральных микро- и нанотехнологий: учеб. пособие для вузов: в 2 т. / под общ. ред. Ю. Н. Коркишко М.: Бином. Лаборатория знаний, 2010-2011. Т. 1: Физико-химические основы технологии микроэлектроники / Ю. Д. Чистяков, Ю. П. Райнова 2010 392 с.	6	
2. Введение в процессы интегральных микро- и нанотехнологий: учеб. пособие для ву-зов: в 2 т. / под общ. ред. Ю. Н. Коркишко М.: Бином. Лаборатория знаний, 2010-2011. Т. 2: Технологические аспекты / М. В. Акуленок [и др.] 2011 252 с	2	
3. Пасынков В. В. Материалы электронной техники : учебник 3- е изд СПб. : Лань, 2001 366,[1]с.	28	
Пасынков В. В. Материалы электронной техники: учебник 5-е изд., стер СПб.; М.; Краснодар: Лань, 2003 366,[1]с.	47	
Пасынков В.В. Материалы электронной техники: учеб. для вузов 6-е изд., стер СПб.: Лань, 2004 366,[1]с.	2	
4. Технология материалов микро- и наноэлектроники / Моск.гос.ин-т стали и сплавов (технолог.ун-т) М.: МИСИС, 2007. – 542 с.	3	
Учебно-методические издания		
1. Рабочая программа модуля с приложениями «Процессы микро- и нанотехнологии» /Автсост. М.А.Захаров; НовГУ им. Ярослава Мудрого. – В.Новгород, 2017. – 16 с.		

Таблица Г.2 – Информационное обеспечение учебного модуля

Название программного продукта, интернет-ресурса	Электронный адрес	Примечание

Таблица Г.3 – Дополнительная литература

Библиографическое описание издания (автор, наименование, вид, место и год издания, кол. стр.)	Кол. экз. в библ. Нов- ГУ	Наличие в ЭБС
1 Таиров Ю.М. Технология полупроводниковых и диэлектрических приборов: учеб. для вузов / Ю.М.Таиров, В.Ф.Цветков 3-е изд., стер. – СПб.: Лань, 2002. – 423 с.	22	
2 Антипов Б.Л. Материалы электронной техники: Задачи и вопросы: учеб. для студентов вузов 3-е изд., стер СПб.; М.; Краснодар: Лань, 2003. – 206 с.	102	

Действит	сельно для учебного	года	/	
Зав. кафе	дрой	_ Б.И. Селезне	В	
		20 г.		
СОГЛАСОВАНО				
НБ НовГУ:				
	лолжност	5	полпись	расшифровка