УДК 519.833

В.А.Матвеев

ИГРОВАЯ ЗАДАЧА С ВЕКТОРНЫМИ ВЫИГРЫШАМИ: СРЕДНЕКВАДРАТИЧНОЕ РАВНОВЕСИЕ

Псковский государственный университет

The game problem for *N* persons with vector payoffs is considered. Usually for such a problem the Pareto equilibrium is used as a solution. As a rule, there are infinitely many solutions like this. In order to specify the Pareto equilibrium the conception of mean-square equilibrium is introduced. The conditions of existence of such solution are presented and a model example is considered.

1. Введение

При изучении сложных социально-экономических явлений большое значение имеет математическое моделирование. Обычно в таких моделях представлено взаимодействие нескольких сторон. Каждая из них оказывает воздействие на функционирование системы. Стороны имеют свои интересы, которые могут различаться или совпадать, полностью или частично. Удобным подходом к изучению таких явлений является теоретико-игровое моделирование [1, 2].

Определенный интерес представляют модели, учитывающие помехи, возмущения, ошибки измерений и другие неопределенности, которые существенно влияют на исход. Выделим одну сторону моделирования, в которой неопределенности связаны с неточностями формализации цели управляемого процесса. В классификации неопределенностей [3] это «неопределенности, отражающие нечеткость знаний игроками своих целей».

Обычно при описании сложного социально-экономического явления имеется целый ряд показателей, оптимизация которых несомненна, но часто эти показатели противоречивы. В такой задаче неизвестен единый критерий, показатель качества функционирования системы. В то же время имеются отдельные желательные свойства, представленные частными критериями. Можно сказать, что в этом случае имеется неопределенность в функции цели. В первом приближении такую проблему можно изучать, применяя методы многокритериальной оптимизации.

Более точную модель взаимодействия нескольких сторон, учитывающую неопределенности в целях, представляет игровая задача с векторными выигрышами. В такой модели выделены несколько сторон (*n* игроков) и их возможные действия (множества стратегий). Функции выигрыша неизвестны, но приводятся наборы показателей, которые представляют оценки отдельных сторон сделанного игроками выбора. Фактически вместе с каждым игроком рассматривается набор его критериев. На содержательном уровне игрок стремится выбрать свою стратегию так, чтобы все компоненты векторной функции выигрыша достигали возможно больших значений.

Изучение игровых задач с векторными выигрышами началось достаточно давно [4]. Современное состояние теории представлено в [5,6]. В качестве решения игровой задачи с векторными выигрышами обычно рассматривается равновесная по Парето ситуация [4-6]. В общем случае в игровой задаче имеется бесконечное множество оптимальных по Парето решений. Сокращение множества «претендентов» на оптимальное решение, тем более выбор единственного наилучшего решения, является важной задачей. Проблеме уточнения равновесия и посвящена данная статья.

2. Математическая постановка задачи

Рассматривается бескоалиционная игра N лиц с векторными выигрышами

$$\langle N, \{X^i\}_{i \in \mathbb{N}}, \{f^i(x)\}_{i \in \mathbb{N}} \rangle. \tag{1}$$

Здесь $N = \{1,...,n\}$ — конечное множество номеров игроков. Множество $X^i \subset R^{k_i}$ состоит из стратегий $x^i = (x_1^i,...,x_{k_i}^i)$ игрока $i \in N$. Набор стратегий всех игроков называется *си*-

 $\mathit{myaque\~u}$ и множество всех ситуаций $X = \prod_{i=1}^n X^i$. Заданы векторные функции $f^i: X \to R^{l_i}$,

которые каждой ситуации ставят в соответствие вектор $f^i(x) = (f^i_1(x), ..., f^i_{l_i}(x))$ выигрышей игрока $i \in N$.

Партия игры развивается следующим образом: каждый из игроков $i \in N$ выбирает свою стратегию $x^i \in X^i$, в результате чего складывается ситуация $x \in X$. После этого игроки получают свои выигрыши $f^i(x) = (f_1^i(x),...,f_{l_i}^i(x))$, равные значению своей векторной функции в сложившейся ситуации $x \in X$. Цель игрока $i \in N$ состоит в выборе такой своей стратегии, чтобы получить возможно большие значения каждой компоненте своей векторной функции выигрыша $f^i(x) = (f_1^i(x),...,f_{l_i}^i(x))$. При выборе стратегии игрок должен учитывать выборы остальных игроков.

В качестве решения задачи обычно используется равновесная по Парето ситуация [4-6]. Определение 1. Ситуация $x^* \in X$ игры (1) называется равновесием по Парето, если $\forall i \in N, x^i \in X^i$ выполнено равенство $f^i(x^{-i^*}, x^i) = f^i(x^*)$ или $\exists j \in N$, что $f^i_i(x^{-i^*}, x^i) < f^i_i(x^*)$.

Равновесие по Парето в игровой задаче с векторными выигрышами (1) является первым шагом в процессе выбора решения. Как правило, таких решений достаточно много. Причина состоит в несравнимости исходов. В этом проявляется неопределенность в цели. «Выбор между несравнимыми исходами является сложной концептуальной проблемой и составляет основное содержание многокритериальной оптимизации» [7]. В то же время решение, не являющееся равновесием по Парето, не может претендовать на роль единственного решения задачи (1). Таким образом, для выбора единственного решения требуется уточнение концепции равновесия по Парето.

3. Среднеквадратичное равновесие

В проблеме уточнения решения для задачи векторной оптимизации (1) один из путей состоит в использовании такой ситуации, что в критериальном пространстве доставляет минимальное отклонение от некоторого «идеального» состояния [8]. Рассмотрим аналогичный подход к игровой задаче с векторными выигрышами (1).

Для каждого игрока $i \in N$ и набора стратегий остальных игроков $x^{-i} \in \prod_{i \in N} X^{j}$

рассмотрим множество в пространстве критериев R^{l_i}

$$\Phi^{i}(x^{-i}) = \{ f^{i}(x^{-i}, x^{i}) \mid x^{i} \in X^{i} \}.$$
 (2)

Для этого множества определим числа

$$f_j^{**}(x^{-i}) = \max_{x^i \in X^i} f_j^i(x^{-i}, x^i), \ j = 1, ..., l_i$$
(3)

и набор таких чисел

$$f^{i*} = f^{i*}(x^{-i}) = (f_1^{i*}(x^{-i}), \dots, f_{li}^{i*}(x^{-i})) \in R^{l_i}$$
(4)

назовем точкой утопии в пространстве критериев игрока $i \in N$.

Рассмотрим параметрическое семейство задач векторной оптимизации (максимизации) относительно игрока $i \in N$

$$V^{i}(x^{-i}) = \{X^{i}, f^{i}(x^{-i}, x^{i})\}.$$
 (5)

В этой задаче параметром является набор стратегий $x^{-i} \in \prod_{j \in N, j \neq i} X^j$, составленный из стратегий всех игроков, кроме *i*-го. В пространстве критериев R^{l_i} будем использовать евклидово расстояние $\forall f^i, g^i \in R^{l_i}$

$$d(f^{i}, g^{i}) = \left(\sum_{i=1}^{l_{i}} (f^{i} - g^{i})^{2}\right)^{0.5}.$$

Определение 2. Стратегия $x^{i^*} \in X^i$ игрока $i \in N$ называется среднеквадратичным решением в задаче векторной оптимизации $V^i(x^{-i})$ из (5), если

$$x^{i^*} \in \arg\min_{x^i \in X^i} d(f^{i^*}(x^{-i}), f^i(x^{-i}, x^i)).$$
 (6)

Ситуация $x^* = (x^{1^*}, ..., x^{n^*}) \in X$ называется *среднеквадратичным равновесием* в игровой задаче с векторным выигрышами (1), если $\forall i \in N, x^i \in X^i$ выполнено неравенство

$$d(f^{i^*}(x^{-i^*}), f^i(x^{-i^*}, x^{i^*})) \le d(f^{i^*}(x^{-i^*}), f^i(x^{-i^*}, x^i)). \tag{7}$$

В условиях (6) и (7) точка утопии $f^{i*}(x^{-i*})$ определена, если в (4) положить $x^{-i} = x^{-i*} = (x^{1*}, ..., x^{i-1*}, x^{i+1*}, ..., x^{n*})$. Отметим, что ситуация $(x^{-i*}, x^{i*}) = x^*$.

Это определение является достаточно полным. Во-первых оно включают как частный случай определение равновесия для игры (1) при $l_i=1, i\in N$. Действительно, в этом случае $(f^{i*}(x^{-i*}), f^i(x^{-i*}, x^{i*}))=0$, и неравенство (7) верно $\forall i\in N, x^i\in X^i$. Во-вторых, оно сводится к среднеквадратичному решению в задаче векторной оптимизации. Пусть в игре (1) имеется один игрок, т.е. N=1. В этом случае в (5) представлена задача векторной оптимизации $V^1=\{X^1, f^1(x^1)\}$. Тогда согласно определению 2, стратегия x^{1*} из (6) является среднеквадратичным решением задачи векторной оптимизации.

Содержательно среднеквадратичное равновесие означает, что игрок $i \in N$, уклонившись в одностороннем порядке от этой ситуации, не может в «своем» критериальном пространстве перейти в такое новое состояние, что в евклидовой метрике будет располагаться ближе к точке утопии. В частности отсюда получаем, что если игрок $i \in N$, уклонившись в одностороннем порядке от равновесной ситуации, улучшит какую-либо компоненту «своей» векторной функции выигрыша, то обязательно найдется другая компонента, результат по которой ухудшится. Из последнего следует

Утверждение 1. В игровой задаче с векторными выигрышами (1) каждое среднеквадратичное равновесие является равновесием по Парето.

Для доказательства теоремы существования среднеквадратичного равновесия используем вспомогательный результат, имеющий и самостоятельное значение.

Лемма. Пусть функции $g_1(x),...,g_k(x)$ определены, неотрицательны и выпуклы на выпуклом множестве $X \subset \mathbb{R}^n$. Тогда функция $h(x) = (g_1^2(x) + ... + g_k^2(x))^{0.5}$ выпукла на X.

Доказательство следует из определения выпуклой функции и неравенства Коши — Буняковского [9].

Утверждение 2. Пусть в игре (1) для любого игрока $i \in N$ выполнены условия:

- а) множество стратегий $X^i \subset R^{k_i}$ непустой выпуклый компакт;
- б) векторная функция $f^{i}(x)$ непрерывна на X;

в) векторная функция $f^i(x^{-i},x^i)$ вогнута на X^i для любого набора стратегий $x^{-i}\in\prod_{i\in N,j\neq i}X^j.$

Тогда в игре существует среднеквадратичное равновесие.

Отметим, что векторная функция $f^i(x^{-i}, x^i)$ вогнута на X^i , если на этом множестве вогнута каждая его компонента $f^i_j(x^{-i}, x^i)$, $j = 1,...,l_i$.

Доказательство основано на применении теоремы Какутани о неподвижной точке [10]. Согласно этой теореме многозначное отображение непустого, компактного и выпуклого множества $X \subset \mathbb{R}^p$ в себя с непустыми, компактными и выпуклыми значениями и полунепрерывное сверху по включению должно иметь хотя бы одну неподвижную точку. В рассматриваемом случае условия теоремы выполнены, и неподвижная точка соответствующего многозначного отображения является среднеквадратичным равновесием в задаче (1).

По аналогичной схеме доказывается

Утверждение 3. Пусть в игре (1) для любого игрока $i \in N$ выполнены условия:

- а) множество стратегий $X^i \subset R^{k_i}$ непустой выпуклый компакт;
- б) векторная функция $f^{i}(x)$ непрерывна на X;

в) для любого набора стратегий
$$x^{-i} \in \prod_{j \in N, j \neq i} X^j$$
 функция $d\left(f^{i^*}(x^{-i}), \ f^i(x^{-i}, x^i)\right) =$
$$= \left(\left(\left(f_1^{i^*}(x^{-i}) - f_1^i(x^{-i}, x^i)\right)^2 + \ldots + \left(f_{l_i}^{i^*}(x^{-i}) - f_{l_i}(x^{-i}, x^i)\right)^2\right)^{0.5}$$
 выпукла на X^i .

Тогда в игре существует среднеквадратичное равновесие.

Пример. Рассмотрим конечную бескоалиционную игру двух лиц с векторными двухкритериальными выигрышами из [6]. Такая игра определяется аналогично биматричной игре [1,2]. Отличие состоит в том, что выигрыши игроков представлены векторами размерности два.

(9,0)		(1,4)	
	(9,0)		(10,9)
(10,9)		(4,1)	
	(1,4)		(4,1)

В этой игре два игрока (n=2). В таблице первый игрок выбирает строки (первая, вторая строка), а второй игрок — столбцы (первый, второй столбец). Каждая клетка таблицы соответствует ситуации игры. В клетках представлены векторы выигрышей: в верхнем левом углу выигрыш первого игрока, в нижнем правом углу — второго игрока. Векторы выигрышей являются двухкомпонентными ($l_1 = l_2 = 2$). Смешанные стратегии — это векторы, составляющие фундаментальный симплекс в евклидовом пространстве \mathbb{R}^2 . Выигрыши игроков при использовании смешанных стратегий стандартным образом определяются как математическое ожидание, вычисленное для каждой компоненты векторного выигрыша отдельно.

В [6] показано, что в этой игре множество всех равновесных по Парето ситуаций в смешанных стратегиях P равно

$$\{((\alpha,1-\alpha);(\beta,1-\beta))|0\leq\alpha\leq0,25;0\leq\beta\leq0,25\}\bigcup\{((\alpha,1-\alpha)|0,25\leq\alpha\leq1\}\bigcup\{0;(\beta,1-\beta)|0,25\leq\beta\leq1\}.$$

Множество таких решений бесконечно, более того, его мощность — континуум. Выделим из этого множества одно решение, которое является среднеквадратичным равновесием.

Проведем рассуждения для первого игрока. Определим множество $\Phi^1(x^{-1})$ из (2). В

нашем случае $\Phi^1(x^{-1}) = \Phi^1(\beta)$ и представляет собой отрезок AB в пространстве R^2 , где точки $A(1+2\beta, 4-4\beta)$ и $B(4+6\beta, 1+8\beta)$. Так как согласно утверждению 1 среднеквадратичные равновесия находятся среди равновесий по Парето, то ограничимся рассмотрением стратегий второго игрока с условием $0 \le \beta \le 0,25$. Отметим, что и для первого игрока будем также учитывать только стратегии, у которых $0 \le \alpha \le 0,25$. Согласно (4) определим точку утопии для первого игрока: $f^{1*} = (4+6\beta,4-4\beta)$, а по (5) — параметрическое семейство задач векторной оптимизации:

$$V^{1}(\beta) = \{X^{1} = [0, 0.25], f^{1}(\alpha, \beta) = (4 - 3\alpha + 6\beta + 2\alpha\beta, 1 + 3\alpha + 8\beta - 12\alpha\beta)\}.$$
 (8)

Здесь $\alpha = [0, 0.25]$ определяет стратегию первого игрока и выбирается им из условия минимизации среднеквадратичного отклонения, как это представлено в (6). В данных условиях для каждого $\beta = [0, 0.25]$ найдется единственное значение $\alpha = \alpha(\beta) \in [0, 0.25]$, что является решением включения (6).

Для нахождения этой функции найдем точку на отрезке AB в пространстве R^2 , где $A(1+8\beta, 4-4\beta)$ и $B(4+6\beta, 1+8\beta)$, , ближайшую к соответствующей точке утопии $f^{1*}=(4+6\beta, 4-4\beta)$. Используя полученные значения и учитывая векторную функцию выигрыша из (8), получаем систему для определения функции $\alpha=\alpha(\beta)$:

$$4 - 3\alpha + 6\beta + 2\alpha\beta = 0,5 \cdot (1176\beta^3 - 488\beta^2 + 6\beta + 45)/(9 - 42\beta + 74\beta^2);$$

$$1 + 3\alpha + 8\beta - 12\alpha\beta = 0,5 \cdot (-544\beta^3 + 722\beta^2 - 264\beta + 45)/(9 - 42\beta + 74\beta^2).$$

Эта нелинейная система совместна и неопределенна. Ее общее решение имеет вид

$$\alpha = 2.25 \cdot (16\beta^2 - 8\beta + 1)/(9 - 42\beta + 74\beta^2).$$

Полученная функция предписывает первому игрока его наилучший ответ относительно критерия (6) на любой выбор второго игрока $\beta \in [0, 0.25]$. По аналогичной схеме определяется функция $\beta = 2.25 \cdot (16\alpha^2 - 8\beta\alpha + 1)/(9 - 42\alpha + 74\alpha^2)$ — наилучший ответ второго игрока.

Согласно определению 2, среднеквадратичное равновесие определяется как решение системы уравнений

$$\begin{split} \alpha &= 2,25 \cdot \left(16\beta^2 - 8\beta + 1\right) \! \! \left/ \left(9 - 42\beta + 74\beta^2\right); \\ \beta &= 2,25 \cdot \left(16\alpha^2 - 8\beta\alpha + 1\right) \! \! \left/ \left(9 - 42\alpha + 74\alpha^2\right). \end{split}$$

Численное решение этой системы (с точностью до четырех знаков после запятой) имеет вид $\alpha = \beta = 0,1542$. Итак, рассматриваемая игровая задача имеет единственное среднеквадратичное равновесие

$$x^* = (x^{1^*}, x^{2^*})$$
, где $x^{1^*} = (0.1542, 0.8458)$ и $x^{2^*} = (0.1542, 0.8458)$.

В этом случае игроки получают равные векторные выигрыши

$$f^{1}(x^{1*}, x^{2*}) = f^{2}(x^{1*}, x^{2*}) = (4,5103, 2,4110).$$

4. Заключение

В работе рассмотрена игровая задача N лиц с векторным выигрышем у каждого игрока (1). Для такой задачи имеются общепринятые подходы к определению решения. Они реализованы в концепции равновесной ситуации по Нэшу — Парето [4-6].

Но, как правило, в игровой задаче с векторными выигрышами существует бесконечное множество решений. Все они равноправны относительно определения векторного равновесия. Возникает проблема уточнения решения.

В данной работе определяется ситуация в игре (1), равновесная в игровом смысле относительно минимизации расстояния до соответствующей точки утопии. Такое решение называется среднеквадратичным равновесием и является уточнением равновесия Нэша — Парето. Свойствам такого решения, в частности условиям существования, и посвящена работа.

Предложенный метод позволяет улучшить качество решения в сложных случаях. Вопервых, среднеквадратичное равновесие существует для достаточно широкого класса задач. Во-вторых, такое решение исключает заведомо неудачные, неравновесные ситуации из числа «претендентов» на оптимальный выбор. В-третьих, метод позволяет в некоторых случаях выделить единственное решение. Такую возможность демонстрирует приведенный пример.

1. Fudenberg D., Tirole J. Game Theory. Cambridge: MIT Press, 1993. 579 p.

^{2.} Петросян Л.А., Зенкевич Н.А., Семина Е.А. Теория игр. М.: Высшая школа, 1998. 304 с.

^{3.} Жуковский В.И. Кооперативные игры при неопределенности и приложения. М.: УРСС, 1999. С.17.

Shaplay L.S. // Naval Research Logistics Quarterly. 1959. Vol.6. P.57-61.

^{5.} Van Megen F., Borm P., Tijs S. // Math. Methods of OR. 1999. Vol.49. № 3. P.401-412.

^{6.} Матвеев В.А. // Изв. Ин-та математики и информатики УдГУ. Ижевск, 2001. Вып.1 (21). C.67-82.

^{7.} Розен В.В. Математические модели принятия решений в экономике. М.: Высшая школа, 2002. С.55.

Zhukovskii V.I., Salukvadze M.E. The Vector-Valued Maximin. Boston, San Diego, N.Y., L.: Academic Press, 1994. 480 p.

^{9.} Канторович Л.В., Акилов Г.Г. Функциональный анализ. М.: Наука, 1972. С.134.

^{10.} Обен Ж.-П., Экланд И. Прикладной нелинейный анализ. М.: Мир, 1988. 512 с.