Расчетно-графическое задание № 2 для студентов гр. 3014 ду (весенний семестр 2024 г.)

Преподаватель: А.В. Ласунский

Группа: 3014

• Год поступления: 2023

• Kypc: 1

• Направление (специальность): 11.03.01 Радиотехника

• Профиль: Аудиовизуальная техника в технологии развлечений

• Институт: ИЭИС

• Форма обучения: очная ускоренная

№ п/п	ФИО
1	Денисюк Никита Игоревич
2	Егоров Сергей Евгеньевич
3	Катичев Мирослав Васильевич
4	Майоров Павел Дмитриевич
5	Максимов Евгений Михайлович
6	Осипов Павел Александрович
7	Тезапсиди Георгий Петрович
8	Флавьянов Дмитрий Сергеевич

Ваш номер варианта равен вашему номеру в списке группы, который приведен выше

Расчетно-графическое задание № 2

Дифференциальные уравнения. Числовые и функциональные ряды

Задание І.

Решить дифференциальное уравнение или решить задачу Коши, если указаны начальные условия.

Вариант 1	a) $y' = \frac{3x + 2y}{2x - 3y}$	6) y''tgx = y' + 1
Вариант 2	a) $y' + \frac{y}{x} = \frac{\sin x}{x}$	$6) y'' - \frac{y'}{x} = xe^x$

Вариант 3	a) $y' = \frac{y^2}{x^2} + 8\frac{y}{x} + 12$	6) $y''y^3 = 1$
Вариант 4	a) $y' - 2\frac{y}{x} + x = 0$	$6) y''x \ln x - y' = 0$
Вариант 5	a) $y' + \frac{x}{1-x^2}y = \frac{1}{1-x^2}$	6) $y''(y-1) = 2(y')^2$
Вариант 6	a) $y' + \frac{2x-5}{x^2}y = \frac{5}{x^4}$	6) xy'' + y' = 1
Вариант 7	a) $y' - \frac{y}{x} = -\frac{\ln x}{x}$	$6) y'' - \frac{y'}{x} = \sqrt{x}$
Вариант 8	$a) y' = \frac{y}{x - y}$	6) $y''y^3 + 1 = 0$
Вариант 9	a) $y' = \frac{x^2 + y^2}{2xy}$	$6) y'' - \frac{y'}{x} = -\frac{1}{x^2}$
Вариант 10	a) $y' + \frac{3y}{x} = \frac{2}{x^3}$	б) $y''tgx = 2y'$

Задание II.

Решить линейные неоднородные уравнения.

Вариант 1	1) $y'' + 2y' + 2y = \sin x + 2\cos x$
	2) $y''' + 2y'' = 3e^x + 18 + 36x$
Вариант 2	1) $y'' - 4y' + 4y = x^2$
	2) $y'' - 2y' + 2y = 4e^x \sin x$
Вариант 3	1) $y'' - 4y' + 3y = e^x$
	2) $y^{IV} + 8y'' + 16y = 25e^x + 48x$
Вариант 4	1) $y'' - 4y' + 8y = e^{2x}$
	2) $y''' - y' = -2x$
Вариант 5	$1) y''' + y' = \cos 2x$
	2) $y''' - 2y'' = e^{2x}$

Вариант 6	1) $y'' - 4y = e^x + e^{2x}$
	2) $y''' - 2y'' + 10y' = \cos 2x$
Вариант 7	$1) y'' + 4y = e^x + \sin x$
	2) $y''' - 2y'' + y' = 2x + 1$
Вариант 8	1) $y'' - 4y' + 3y = e^x$
	$2) y^{\text{IV}} - y = \cos x$
Вариант 9	$1) y'' + 9y = \sin x$
	2) $y'' - 6y' + 5y = 2x + 1 + e^{5x}$
Вариант 10	1) $y'' + 6y' + 18y = 36x + 12$
	2) $y''' - 6y'' = \sin x + e^{6x}$

Задание III.

Исследовать сходимость числового ряда.

Вариант 1	$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^3}$
Вариант 2	$\sum_{n=1}^{\infty} \frac{2^n}{3^n \sqrt{n}}$
Вариант 3	$\sum_{n=1}^{\infty} \frac{1}{n^2 + 6n + 5}$
Вариант 4	$\sum_{n=1}^{\infty} \frac{n}{3^n (2n+1)}$
Вариант 5	$\sum_{n=1}^{\infty} \frac{(n+1)^n}{n!}$

Вариант 6	$\sum_{n=1}^{\infty} \frac{n+10\sin n}{n^3+n+2}$
Вариант 7	$\sum_{n=1}^{\infty} \frac{2n^2 + 1}{\sqrt{n} \ 3^n}$
Вариант 8	$\sum_{n=1}^{\infty} \frac{2^n}{8(n+1)!}.$
Вариант 9	$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^5}$
Вариант 10	$\sum_{n=1}^{\infty} \frac{\ln n}{(n+1)^2}$

Задание IV.

Найти область сходимости степенного ряда.

Вариант 1	$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n!} (x+1)^n$
Вариант 2	$\sum_{n=1}^{\infty} \frac{10^n}{\sqrt{n}} x^n$
Вариант 3	$\sum_{n=1}^{\infty} \frac{3^n x^n}{\sqrt{3n-2}}$
Вариант 4	$\sum_{n=1}^{\infty} \frac{nx^n}{3^n(n+1)}$
Вариант 5	$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^n x^n$

Вариант 6	$\sum_{n=1}^{\infty} \frac{2^n x^n}{n(n+1)}$
Вариант 7	$\sum_{n=1}^{\infty} \frac{(x+8)^{3n}}{n^2}$
Вариант 8	$\sum_{n=1}^{\infty} \frac{x^n}{3^n \sqrt{n}}$
Вариант 9	$\sum_{n=1}^{\infty} \frac{(2x-3)^n}{\sqrt{2n+3}}$
Вариант 10	$\sum_{n=1}^{\infty} \frac{(x+5)^n n^5}{(n+1)!}$

Задание V. Разложить в вещественный ряд Фурье функцию f(x) на промежутке [a; a+T], на котором задана функция. Построить графики функции f(x) и суммы ее ряда Фурье на промежутке [a; a+T].

Вариант 1	$f(x) = \begin{cases} -1 - x, & x \in [-1; 0), \\ 1 - x, & x \in [0; 1]. \end{cases}$
Вариант 2	
	$f(x) = \sin x , x \in [-\pi; \pi].$
Вариант 3	$(x-1, x \in [0;1),$
	$f(x) = \begin{cases} x - 1, & x \in [0; 1), \\ 0, & x \in [1; 3), \\ x - 3, & x \in [3; 4]. \end{cases}$
	$(x-3, x \in [3;4].$
Вариант 4	
	$f(x) = \begin{cases} x, & x \in [0;1), \\ 2-x, & x \in [1;2]. \end{cases}$
	(2 %) % ([1,2].

Вариант 5	$f(x) = \begin{cases} x + \frac{\pi}{2}, & x \in \left[0; \frac{\pi}{2}\right), \\ \pi, & x \in \left[\frac{\pi}{2}; \pi\right]. \end{cases}$
Вариант 6	$f(x) = \begin{cases} 0, & x \in [-\pi; 0), \\ \sin x, & x \in [0; \pi]. \end{cases}$
Вариант 7	$f(x) = \sin\frac{x}{2}, x \in [-\pi; \pi].$
Вариант 8	$f(x) = \cos\frac{x}{2}, x \in [-\pi; \pi].$
Вариант 9	$f(x) = \cos\frac{2x}{3}, x \in \left[0; \frac{3\pi}{2}\right].$
Вариант 10	$f(x) = x^2, x \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right].$