Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Новгородский государственный университет имени Ярослава Мудрого» Институт электронных и информационных систем

Кафедра радиосистем

Микропроцессорная техника в мехатронике и робототехнике

Учебный модуль по направлению подготовки 15.03.06 — Мехатроника и робототехника

Фонд оценочных средств

a 100	Разработал
Принято на заседании Ученого совета ИЭИС	доцент кафедры РС
Протокол № <u>39</u> от <u>23.03</u> 2017 г.	С.А.Гурьянов
Директор ИЭИС	« 1 » 03 2017r.
С.И.Эминов	
	Принято на заседании кафедры РС
	Протокол № 110 от 3.04 2017г.
	Заведующий кафедрой РС
	Муне И.Н.Жукова

Паспорт фонда оценочных средств

Учебного модуля "Микропроцессорная техника в мехатронике и робототехнике" для направления подготовки 15.03.06 – Мехатроника и робототехника

	Ф		C	Контролируем
Nº	Модуль, раздел (в соответствии с РП)	Вид оценочного средства	Количеств о вариантов заданий	ые компетенции (или их части)
1.	Введение	практическое задание	12	
2.	Структура микропроцессора	практическое задание	12	
3.	Программирование микропроцессоров	практическое задание	12	
4.	Организация ввода/вывода микропроцессорных систем	практическое задание	12	
5.	Основы проектирования систем управления и контроля на базе современных микроконтроллеров	практическое задание	12	ПК-28
6.	Микроконтроллеры фирмы INTEL	практическое задание	12	ПК-29
7.	Микроконтроллеры фирмы ATMEL	практическое задание	12	
8.	Микроконтроллеры фирмы MICROCHIP	практическое задание	12	
9.	Реализация устройств вводавывода цифровой и аналоговой информации	практическое задание	12	
10.	Зачет	Список вопросов	12	

Характеристики оценочного средства № 1 Индивидуальное домашнее задание (ИДЗ)

1.1.Общие сведения об оценочном средстве

Индивудуальное домашнее задание (ИДЗ) является одним из средств текущего контроля в освоении учебного модуля «Микропроцессорная техника в мехатронике и робототехнике». Индивидуальное домашнее задание является средством проверки и оценки знаний студентов по освоенному материалу, а также умений применять полученные знания для решения поставленных задач.

В рамках освоения учебного модуля «Микропроцессорная техника в мехатронике и робототехнике» задание выдаётся индивидуально каждому студенту. Студенты выполняют задания поэтапно в письменном виде к каждому практическому занятию. В случае неудовлетворительной оценки студенту даётся неделя на исправление ошибок.

Во время проверки выполненной ИДЗ оценивается способность студента найти правильный ответ на поставленный вопрос, умение применять знания полученные в ходе лекций и практических занятий. Максимальное количество баллов, которые может получить студент за домашнее задание от 9 до 18 баллов в зависимости от уровня сложности.

Методика выполнения ИДЗ и варианты задач - согласно источника (1). Оформление отчета по ИДЗ – согласно источника (2).

1.2 Параметры оценочного средства

Таблица 1.1 – Параметры оценочного средства (Индивидуальное домашнее задание)

Микропроцессорная техника в мехатронике и робототехнике:
Метод. указан. к практич. занятиям студентов ДФО / Сост. С.А.
Гурьянов; НовГУ. – В. Новгород, 2017.–50 с.
СТО 1.701-2010. Текстовые документы. Общие требования к
построению и оформлению. Стандарт организации.
Университетская система учебно-методической документации.—
Введ. 1998-12-16. – Великий Новгород: ИПЦ НовГУ 52 с.
2 ч. – на выполнение ИДЗ
20 мин – на защиту
10-20
случайная
Максимально 144 баллов
демонстрирует четкое и безошибочное выполнение заданий,
четко и безошибочно объясняет методику выполнения расчетов.
допускает неточности при выполнение заданий; недостаточно
четко объясняет методику выполнения расчетов.
испытывает трудности при выполнение заданий; испытывает
трудности в объяснении методики выполнения расчетов.

Характеристики оценочных средств №2 Защита практического задания (ПЗ)

2.1 Общие сведения об оценочном средстве

Темы практических занятий

No	Наименование работы
1	Изучение системы отладки EMU8086
2	Программа умножения 32-разрядных чисел
3	Программирование ввода/вывода
4	Программа «Калькулятор»
5	Разработка программы формирования цифрового сигнала
6	Разработка программы измерения временных параметров
7	Разработка программы формирования аналогового
8	Разработка программы измерения параметров
9	Разработка программы преобразования аналогового

Защита практического задания является одним из средств текущего контроля в освоении учебного модуля «Микропроцессорная техника в мехатронике и робототехнике». Защита практического задания используется для проверки и оценивания знаний, умений и навыков студентов после изучения тем 3,5 и выполнения каждого практического задания ПЗ1-ПЗ9.

Защита практических заданий проводится в форме индивидуального устного опроса студентов. Вопросы ставит преподаватель по своему усмотрению, используя контрольные вопросы приведенные методических указаниях в конце каждого задания. Во время защиты практических заданий оценивается способность студента правильно сформулировать ответ, умение выражать свою точку зрения по данному вопросу, ориентироваться в терминологии и применять полученные в ходе лекций и практических занятий знания. Список возможных вопросов для собеседования по контрольным работам находится в Приложении Б к рабочей программе модуля

Методика выполнения ИДЗ и варианты задач - согласно источника (1). Оформление отчета практическому занятию – согласно источника (2).

2.2 Параметры оценочного средства

Таблица 2.1 – Параметры оценочного средства (Защита практического задания)

Источник (1)	Микропроцессорная техника в мехатронике и робототехнике:
	Метод. Указания к практическим занятиям/ Сост. С.А.Гурьянов;
	НовГУ им. Ярослава Мудрого. – Великий Новгород, 2017. – 42 с.
Источник (2)	СТО 1.701-2010. Текстовые документы. Общие требования к
	построению и оформлению. Стандарт организации.
	Университетская система учебно-методической документации.—
	Введ. 1998-12-16. – Великий Новгород: ИПЦ НовГУ 52 с.
Предел длительности	2 ч. – на выполнение ЛР
контроля	20 мин – на защиту
Предлагаемое количество	1- 4
практических заданий из	
одного контролируемого	
раздела	
Последовательность выборки	случайная
задач из каждого раздела	
Критерии оценки:	Максимально 54 баллов
	Каждая защита лабораторной работы максимально 6 баллов
«5»	имеет целостное представление материала; четко объясняет
5-6 баллов	значение всех терминов, четко и безошибочно объясняет
	методику проведения испытаний и их результаты.
«4»	допускает неточности при демонстрации знаний; недостаточно
3-4 балла	четко объясняет методику проведения испытаний и их
	результаты.
«3»	испытывает трудности при демонстрации знаний; испытывает
1 - 2 балла	трудности в определении терминов и объяснении методики
	проведения испытаний и их результатов.

Характеристика оценочного средства № 3 ДОКЛАД-ПРЕЗЕНТАЦИЯ

3.1 Общие сведения об оценочном средстве

Подготовка студентом доклада - презентации является одним из видов текущего контроля и оценки его знаний, умений и навыков, уровня сформированности компетенций при освоении учебного модуля «Микропроцессорная техника в мехатронике и робототехнике».

Доклад - презентация является частью самостоятельной работы студента, но также используется как оценочное средство. В докладе - презентации студент излагает в письменной форме результаты анализа заранее полученной темы. Максимальное количество баллов за доклад - презентацию -50 баллов.

Для подготовки доклада - презентации студенту рекомендуется выбрать одну из предложенных тем. Объем доклада - презентации, как правило, составляет 24-26 страниц. Наличие сносок на научную литературу повышают оценку данной работы. Структура доклада - презентации: введение, содержательная часть, заключение, список использованной литературы. Оформление текста доклада - презентации должно соответствовать требованиям СТО 1.701-2010.

Таблица 3.1 – Параметры оценочного средства (доклад - презентация)

Предлагаемое количество тем	20
Последовательность выборки	По желанию
тем Предел длительности	не более 15 минут на один доклад с обсуждением
контроля Критерии оценки:	Максимально 52 баллов
«5»	Владеет осмысленным пониманием материала доклада, умеет
47 - 52 балла, если	отстаивать и доказывать свою точку зрения, задает вопросы по существу. Регламент выдерживает
«4»	Грамотно и четко излагает свои мысли в устной форме, но
36 - 46 балл, если	испытывает затруднения при ответе на вопросы. Выдерживает регламент, активно участвует в обсуждении докладов
«3»	Формально воспроизводит материал доклада, испытывает
26 – 35 баллов, если	затруднения при ответе на вопросы. Не выдерживает регламент, не участвует в обсуждении докладов

Характеристики оценочного средства № 4 Зачет

4.1 Общие сведения об оценочном средстве

Зачет является видом итогового контроля и оценки знаний, умений и навыков, уровня сформированности компетенций студента при освоении учебного «Микропроцессорная техника в мехатронике и робототехнике».

Контрольные вопросы экзамена достаточно полно отображают планируемую содержательную структуру изучаемого и контролируемого материала, дают возможность ранжировать студентов по уровням подготовленности: чем меньше пробелов в ответах обучаемого на вопросы билета, тем лучше структура его знаний; чем выше его тестовый балл, тем выше качество его подготовленности.

Вопросы для зачета формируются индивидуально из перечня вопросов рабочей программы (Приложение А). В каждом билете случайным образом выбирается 3 вопроса.

Максимальное количество баллов за экзамен -50.

4.2 Параметры оценочного средства

Таблица 4.1 – Параметры оценочного средства (зачет)

Предел длительности	не более 30 минут на ответ
контроля	
Предлагаемое количество	3
вопросов	
Критерии оценки:	Максимально 50 баллов
«5»	имеет целостное представление об основах мехатроники и
45-50 баллов	робототехники, принципах создания новой техники для
	автоматизации технологических процессов;
	уметь оценивать возможности применения мехатронных и
	робототехнических систем в автоматизации различных
	технологических процессов;
	владеет навыками работы с различными источниками научно-
	технической информации в области мехатроники и
	робототехники.
«4»	допускает неточности при демонстрации знаний о представление
35-44 балла	об основах мехатроники и робототехники, принципах создания
	новой техники для автоматизации технологических процессов;
	недостаточно четко объясняет возможности применения
	мехатронных и робототехнических систем в автоматизации
	различных технологических процессов.
«3»	испытывает трудности при демонстрации знаний об основах
25-34 балла	мехатроники и робототехники, принципах создания новой
	техники для автоматизации технологических процессов;
	испытывает трудности при оценке возможности применения
	мехатронных и робототехнических систем в автоматизации
	различных технологических процессов.

Приложение А Вопросы для самоконтроля

Структура микропроцессорной системы

- Структура микропроцессорной системы
- Центральный процессор
- Оперативное запоминающее устройство
- Постоянное запоминающее устройство
- Сравнительные характеристики микропроцессоров
- Структура микропроцессорного устройства 8086.
- Арифметико-логическое устройство
- Шинная организация микропроцессора
- Принципиальное обозначение микропроцессора 8086.

Программирование микропроцессоров

- Режимы адресации 8086.
- Арифметические команды и логические команды 8086.
- Команды переходов и циклов 8086.
- Команды работы с байтами и цепочками.
- Программа умножения 32-разрядных чисел.
- Программа вычисления квадратного корня.
- Программа поиска MAX и MIN.
- Программа сортировки массива 8086

Организация ввода/вывода микропроцессорных систем

- Устройства ввода-вывода
- Реализация параллельного интерфейса
- Реализация последовательного интерфейса

Микроконтроллеры INTEL

- Структура однокристальной микро-ЭВМ.
- Организация ввода/вывода информации однокристальной микро-ЭВМ.
- Реализация ОЗУ и ПЗУ однокристальной микро-ЭВМ.
- Интегральный таймер однокристальной микро-ЭВМ.
- Последовательный интерфейс однокристальной микро-ЭВМ.
- Организация прерываний однокристальной микро-ЭВМ.
- Методы адресации.
- Команды передачи данных.
- Арифметические команды.
- Логические команды.
- Команды передачи управления.
- Команды работы с битами.

Микроконтроллеры АТМЕL

- Микроконтроллеры фирмы ATMEL
- Микроконтроллеры с RISC архитектурой
- Методы адресации.
- Команды передачи данных.
- Арифметические команды.
- Логические команды.
- Команды передачи управления.

• Команды работы с битами.

Микроконтроллеры MICROCHIP

- Характеритсики РІС процессоров
- Структура РІС процессоров
- Реализация ОЗУ и ПЗУ РІС процессоров
- Специальные регистры РІС процессоров
- Модуль таймера-счетчика РІС процессоров
- Модуль сторожевого таймера РІС процессоров
- Развитие РІС процессоров
- Команды передачи данных
- Арифметические команды
- Логические команды
- Команды передачи управления
- Команды работы с битами

Программы для микроконтроллеров

- Программа вычисления логической функции
- Реализация АШП последовательного приближения
- Программа преобразования системы счисления (2-2.10)
- Арифметические операции двойной точности
- Вычисление синуса
- Передача данных последовательным кодом
- Передача и прием данных через последовательный порт
- Передача символьной строки через последовательный порт-
- Измерение длительности сигнала
- Подсчет числа импульсов
- Программа сканирования клавиатуры
- Программа умножения для РІС-контроллера

Реализация устройств ввода-вывода

- Реализация параллельного интерфейса.
- Интерфейс RS232
- Интерфейс SPI
- Интерфейс I2C
- Интерфейс
- Реализация и параметры АЦП
- Реализация и параметры ЦАП
- Датчики физических величин