УДК 519.676

А.С.Тихомиров

О БЫСТРЫХ АЛГОРИТМАХ ОДНОРОДНОГО МАРКОВСКОГО МОНОТОННОГО ПОИСКА ЭКСТРЕМУМА

Институт электронных и информационных систем HoвГУ, Alexey. Tikhomirov@novsu.ru

An estimate of the convergence rate of some homogeneous Markov monotone random search optimization algorithms is obtained. This estimate is used to construct a class of fast optimization methods. It is shown that the number of evaluations of the objective function required for achieving a given accuracy ε increases slowly (logarithmically) as ε tends to zero.

Ключевые слова: гарантирующее число шагов, пространство оптимизации, скорость сходимости

1. Введение

Работа посвящена теоретическому исследованию алгоритмов случайного поиска экстремума функции (см. [1-6]). В ней представлена оценка скорости сходимости однородного марковского монотонного случайного поиска, и с ее помощью построены быстрые алгоритмы оптимизации невырожденных целевых функций. Данная работа является продолжением работы [12] и дополняет результаты, изложенные в [3,7-12]. Доказательства всех утверждений приведены в [13].

В качестве *пространства оптимизации* рассмотрим пространство \mathbf{R}^d с какой-либо обычной метрикой ρ (см. [12]) и d-мерной мерой Лебега mes. Замкнутый шар радиуса r с центром в точке x обозначим как $S_r(x) = \{y \in \mathbf{R}^d : \rho(x,y) \le r\}$ и положим $\phi(r) = \operatorname{mes}(S_r(x))$.

Пусть *целевая функция* $f: \mathbf{R}^d \mapsto \mathbf{R}$ принимает максимальное значение в единственной точке $x_0 = \arg\max\{f(x): x \in \mathbf{R}^d\}$, а нашей целью является отыскание точки x_0 с заданной точностью $\varepsilon > 0$. Для поиска точки максимума воспользуемся *однородным марковским монотонным* случайным поиском (см. [12]), описанным далее с помощью алгоритма моделирования.

Алгоритм 1

Шаг 1. $\xi_0 \leftarrow x$, $i \leftarrow 1$.

Шаг 2. $\varsigma \leftarrow P(\xi_{i-1}, \cdot)$.

Шаг 3. Если $f(\varsigma) \geq f(\xi_{i-1})$, то $\xi_i \leftarrow \varsigma$, иначе $\xi_i \leftarrow \xi_{i-1}$.

Шаг 4. $i \leftarrow i+1$ и перейти к шагу 2.

Здесь x — начальная точка поиска, а $P(x,\cdot)$ — марковские переходные функции (см. [3]), называемые *пробными переходными функциями*. Отметим, что введенный случайный поиск является *монотонным* в том смысле, что неравенства $f(\xi_i) \geq f(\xi_{i-1})$ выполняются при всех i>0. Ниже для вероятностей событий и математических ожиданий случайных величин, связанных со случайным поиском алгоритма 1, начинающимся в точке $x \in \mathbf{R}^d$, используются обозначения \mathbf{P}_x и \mathbf{E}_x .

Особое внимание будет уделено однородному марковскому монотонному случайному поиску, пробные переходные функции $P(x,\cdot)$ которого обладают *симметричной* плотностью вида $p(x,y)=g(\rho(x,y))$, где ρ — метрика, а g — невозрастающая функция, определенная на полуоси $(0,+\infty)$. Функцию g назовем формой поиска.

При отыскании точки максимума x_0 с заданной точностью $\varepsilon > 0$ нас будет интересовать попадание поиска в множество

$$M_{\varepsilon}=M(\varepsilon)=\{x\in S_{\varepsilon}(x_0):f(x)>f(y)$$
 для любого $y\not\in S_{\varepsilon}(x_0)\}$.

Монотонный поиск, попав в множество M_{ε} , из него больше не выйдет. Поэтому мы будем изучать мо-

мент попадания поиска в множество M_{ε} . Обозначим $\tau_{\varepsilon}=\min\{i\geq 0: \xi_i\in M_{\varepsilon}\}$ — момент первого попадания поиска в множество M_{ε} . $\mathit{Трудоемкость}$ случайного поиска определяется как $\mathbf{E}_x \tau_{\varepsilon}$ и имеет смысл среднего числа шагов поиска до достижения им множества M_{ε} . В [12] мы ограничились изучением трудоемкости случайного поиска. В этой работе мы исследуем другую характеристику τ_{ε} . $\mathit{Гарантирующее}$ число $\mathit{шагов}$ определяется как такое минимальное число $\mathit{N}=\mathit{N}(x,f,\varepsilon,\gamma)$ шагов поиска, при котором достижение множества M_{ε} гарантировано с вероятностью не меньшей γ . Иначе говоря,

$$\begin{split} N(x, f, \varepsilon, \gamma) &= \min\{i \geq 0 : \mathbf{P}_{x}(\xi_{i} \in M_{\varepsilon}) \geq \gamma\} = \\ &= \min\{i \geq 0 : \mathbf{P}_{x}(\tau_{\varepsilon} \leq i) \geq \gamma\} \,. \end{split}$$

Если целочисленная функция $N_1(x,f,\epsilon,\gamma)$ обладает тем свойством, что для $\gamma\in(0,1)$ выполнено $\liminf_{\epsilon\to 0}\mathbf{P}_x(\xi_{N_1}\in M_\epsilon)\geq\gamma$, то N_1 называется асимлитомически гарантирующим числом шагов поиска с надежностью γ .

Для построения быстрых алгоритмов случайного поиска на целевую функцию необходимо наложить дополнительные ограничения. Далее будем полагать, что целевая функция $f: \mathbf{R}^d \mapsto \mathbf{R}$ ограничена сверху, измерима и удовлетворяет следующим условиям.

Условие 1. Функция f принимает максимальное значение в единственной точке $x_0 = \operatorname{argmax} \{ f(x) : x \in \mathbf{R}^d \}$.

Условие 2. Функция f непрерывна в точке x_0 .

Vсловие 3. Неравенство $\sup\{f(x): x \notin S_r(x_0)\}$ < < $f(x_0)$ выполнено для любого r>0 .

$$V$$
словие 4. $\bigcup_{r>0} M_r = \mathbf{R}^d$.

Ниже информация о целевой функции f будет выражаться в виде коэффициента асимметрии $F_f(r)=\mathrm{mes}(M_r)/\mathrm{mes}(S_r(x))$. Коэффициент асимметрии «сравнивает» поведение f с F-идеальной одноэкстремальной функцией f_* , для которой $F_{f_*}\equiv 1$. В силу условий, наложенных на целевую функцию, $F_f(r)>0$ при всех r>0 . Функции, у которых $\liminf F_f(r)>0$ при $r\to 0$, будут называться невырожденными. Подробнее наложенные на f ограничения и свойства коэффициента асимметрии F_f обсуждаются в [3,9].

2. Оценки скорости сходимости

Пусть параметры оценки $\{r_i\}_{i=-\infty}^{+\infty}$ таковы, что $0 < r_i < r_{i-1}$ при всех $i, r_i \to 0$ при $i \to +\infty$ и $r_i \to +\infty$ при $i \to -\infty$. Обозначим $n(\varepsilon) = \min\{i : r_i \le \varepsilon\}$ и $t(x) = \sup\{i : x \in M(r_i)\}$.

Пусть $t \le n$ и $0 < v_i \le 1$ при $t+1 \le i \le n$. Введем величины

$$Y(t, n, v_{t+1}, ..., v_n) = \sum_{i=t+1}^{n} \frac{1}{v_i}, \ D(t, n, v_{t+1}, ..., v_n) = \sum_{i=t+1}^{n} \frac{1 - v_i}{v_i^2},$$

$$K(t, n, v_{t+1}, \dots, v_n) = \sum_{i=t+1}^{n} \frac{1}{v_i^3}.$$

Приведем вначале оценку трудоемкости случайного поиска работы [12].

Теорема 1. Пусть целевая функция f удовлетворяет условиям 1-4 и однородный марковский монотонный случайный поиск алгоритма 1 начинается в точке $x \notin M_{\epsilon}$. Пусть t = t(x), $n = n(\epsilon)$ и неравенства $0 < v_i \le \inf\{P(y, M(r_i)) : y \in M(r_{i-1})\}$ верны при всех $t+1 \le i \le n$. Тогда трудоемкость случайного поиска удовлетворяет неравенству $\mathbf{E}_x \mathbf{\tau}_{\epsilon} \le Y(t, n, v_{t+1}, \dots, v_n)$.

Получим асимптотически гарантирующее число шагов и оценки гарантирующего числа шагов для исследуемого случайного поиска. Отметим, что «простая» оценка гарантирующего числа шагов сразу следует из теоремы 1. В условиях теоремы 1, в силу неравенства Маркова, имеет место неравенство $\mathbf{P}_x(\tau_\epsilon \leq Y(t,n,v_{t+1},\ldots,v_n)/(1-\gamma)) \geq \gamma$. Значит величина

 $N_{\mathrm{M}}(t,n,v_{t+1},\ldots,v_{n},\gamma)=[Y(t,n,v_{t+1},\ldots,v_{n})/(1-\gamma)],$ (1) где через [z] обозначена целая часть числа z, служит оценкой сверху гарантирующего числа шагов случайного поиска.

Далее получена другая оценка гарантирующего числа шагов случайного поиска, и показано ее превосходство над «простой» оценкой $N_{
m M}$. Обозначим

$$N_0(t, n, v_{t+1}, ..., v_n, \gamma) =$$

$$= [Y(t,n,v_{t+1},\ldots,v_n) + \Phi^{-1}(\gamma)(D(t,n,v_{t+1},\ldots,v_n))^{1/2}], \ (2)$$
 где $\gamma \in (0,1)$, Φ — функция распределения стандартного нормального закона, функция Φ^{-1} является обратной к Φ .

Основной результат данной работы представляет следующая теорема.

 $Tеорема\ 2.$ В условиях теоремы 1 верно неравенство

$$\mathbf{P}_{x}(\xi_{N_{0}} \in M_{\varepsilon}) \geq$$

$$\geq \gamma - c_0 16 K(t,n,v_{t+1},\dots,v_n) / \left(D(t,n,v_{t+1},\dots,v_n) \right)^{3/2},$$
 где c_0 — абсолютная константа неравенства Эссеена.

Следствие 1. Пусть в условиях теоремы 2 для семейства пробных переходных функций $P^{(\varepsilon)}$ (зависящих от ε) выполнено соотношение

$$\lim_{t \to 0} K(t, n, v_{t+1}, \dots, v_n) / (D(t, n, v_{t+1}, \dots, v_n))^{3/2} = 0, (3)$$

где $v_i=v_i^{(\varepsilon)}$, и пусть величина $N_0=N_0(t,n,v_{t+1},\ldots,v_n,\gamma)$ задается формулой (2). Тогда

$$\mathbf{P}_{x}(\xi_{N_{0}} \in M_{\varepsilon}) \ge \gamma - c_{0}16K(t, n, v_{t+1}, \dots, v_{n})/\varepsilon$$

$$/(D(t, n, v_{t+1}, \dots, v_n))^{3/2} \xrightarrow{\varepsilon \to 0} \gamma. \tag{4}$$

Соотношение (4) показывает, что величина $N_0(t,n,v_{t+1},\ldots,v_n,\gamma)$ является асимптотически гарантирующим числом шагов случайного поиска с надежностью γ . Кроме того она является оценкой сверху гарантирующего числа шагов случайного поиска с надежностью $\gamma_0 = \gamma - c_0 16 K(t,n,v_{t+1},\ldots,v_n)/(D(t,n,v_{t+1},\ldots,v_n))^{3/2}$.

3. Быстрые алгоритмы случайного поиска

В этом разделе получим целый класс однородных поисков, дающих для невырожденных це-

оценки функций трудоемкости левых гарантирующего числа шагов вида $O(\ln^2 \varepsilon)$. Мы рассмотрим семейство однородных марковских монотонных случайных поисков алгоритма 1, пробные переходные функции которых зависят от требуемой точности решения задачи є и обладают симметричными плотностями $p_{\varepsilon}(x,y) = g_{\varepsilon}(\rho(x,y))$ с формами g_{ε} , задаваемыми следующим образом. Пусть h(r) — монотонно невозрастающая строго положительная функция, определенная на полуоси $(0,+\infty)$ и такая, что функция $h(r)r^{d-1}$ суммируема на промежутке [1,+∞). Кроме того предположим, что $h(r)r^d \to 1$ при $r \to 0$. Не умаляя общности будем считать, что функция h непрерывна слева. Зафиксируем параметр a > 0 и положим при $\epsilon > 0$

$$g_{\varepsilon}(r) = \lambda(\varepsilon) \begin{cases} h(a\varepsilon) \text{ при } r \leq a\varepsilon, \\ h(r) \text{ при } r > a\varepsilon, \end{cases}$$
 (5)

где множитель $\lambda(\epsilon)$ обеспечивает условие нормировки (необходимое для плотности).

Определим теперь параметры используемой оценки. Зафиксируем коэффициент сжатия $q \in (0,1)$, радиус R>0 и зададим радиусы окрестностей точки максимума следующим образом: $r_i=Rq^i$. Положим $v_i^{(\varepsilon)}=F_f(r_i)\phi(r_i)g_\varepsilon(r_{i-1}+r_i)$.

Следующее утверждение уточняет результаты теорем 1 и 2 и следствия 1 для поисков с формами (5). Оказывается, что для этих поисков из невырожденности целевой функции f следует выполнение условия (3). Поэтому в этих условиях выполняется соотношение (4).

Теорема 3. Пусть целевая функция f удовлетворяет условиям 1-4 и является невырожденной. Тогда для однородных марковских случайных поисков с формами (5) и начальной точкой $x \neq x_0$ верны соотношение (4) и равенства

$$Y(t,n,v_{t+1},...,v_n) = O(\ln^2 \varepsilon), \ D(t,n,v_{t+1},...,v_n) = O(|\ln^3 \varepsilon|),$$
 $K(t,n,v_{t+1},...,v_n)/(D(t,n,v_{t+1},...,v_n))^{3/2} = O(|\ln \varepsilon|^{-1/2}),$
где $t = t(x)$, $n = n(\varepsilon)$, $r_i = Rq^i$, $v_i = v_i^{(\varepsilon)} = F_f(r_i)\phi(r_i)g_\varepsilon(r_{i-1} + r_i)$.

Таким образом, случайные поиски теоремы 3 являются быстрыми, их трудоемкость и гарантирующее число шагов имеют вид $O(\ln^2\epsilon)$. Отметим, что для методов стохастической глобальной оптимизации (см., напр., [3-5]) типичным результатом является гораздо более худшая — степенная (т. е. $O(1/\epsilon^\alpha)$ при $\alpha>0$) зависимость требуемого числа вычислений целевой функции от ϵ .

В заключение покажем превосходство новой оценки N_0 (см. (2)) над «старой» оценкой $N_{\rm M}$ (см. (1)), полученной с помощью неравенства Маркова. Из определения N_0 видно, что в условиях теоремы 3 и для фиксированных x и γ величина

 $N_0(t, n, v_{t+1}, ..., v_n, \gamma)$ асимптотически эквивалентна величине $Y(t,n,v_{t+1},\ldots,v_n)$ при $\varepsilon \to 0$. Асимптотика оценки $N_{\rm M}$ (см. (1)) будет хуже. Приведем числовой пример для сравнения величины N_0 с оценкой $N_{\rm M}$ при «большем» $\varepsilon = 10^{-2}$. Возьмем пространство оптимизации ${f R}^2$ с метрикой ${f
ho}_{\infty}$ (см. [12]), F-идеальную функцию f, $x_0 = (0,0)$ и x = (1,1). Параметры поиска и параметры оценки описаны в [13]. В качестве статистической оценки гарантирующего числа шагов использованы выборочные квантили $N_*(x, f, \varepsilon, \gamma)$, вычисления которых поиск повторялся 10^7 Результаты статистического моделирования расчетов представлены в следующей таблице.

Оценки гарантирующего числа шагов

Надеж ность ү	0,9	0,95	0,99	0,995	0,999	0,9995	0,9999
N_*	196	238	338	381	481	526	627
N_0/N_*	2,14	1,96	1,64	1,54	1,35	1,29	1,17
$N_{\rm M}/N_{*}$	13	22	76	135	535	978	4101

Видно, что новая оценка N_0 во много раз лучше старой оценки $N_{
m M}$, а при больших значениях

надежности у преимущество становится огромным. Так как с практической точки зрения интересны как раз большие значения надежности, то превосходство новой оценки очевидно.

- Ермаков С.М., Жиглявский А.А. // Теория вероятностей и ее применения. 1983. №1. С.129-136.
- Ермаков С.М., Жиглявский А.А., Кондратович М.В. // Журнал вычисл. математики и мат. физики. 1989. Т.29. №2. С.163-170.
- Zhigljavsky A., Zilinskas A. Stochastic Global Optimization. Berlin: Springer-Verlag, 2008. 262 p.
- Spall J.C. Introduction to stochastic search and optimization: estimation, simulation, and control. Wiley, New Jersey, 2003. 618 n
- Spall J.C., Hill S.D., Stark D.R. Theoretical framework for comparing several stochastic optimization approaches // Probabilistic and randomized methods for design under uncertainty. L.: Springer, 2006. P.99-117.
- 6. Абакаров А.Ш., Сушков Ю.А. Статистическое исследование случайного поиска // Математические модели. Теория и приложения / Под ред. М.К.Чиркова. Вып.2. СПб.: Изд-во НИИХ СПбГУ, 2002. С.70-86.
- 7. Тихомиров А.С. // Вестник НовГУ. Сер.: Техн. науки. 2005. №34. С.90-95.
- 8. Тихомиров А.С. // Вестник НовГУ. 2006. №39. С.34-37.
- Тихомиров А.С. // Журнал вычисл. математики и мат. физики. 2006. Т.46. №3. С.379-394.
- Тихомиров А.С. // Журнал вычисл. математики и мат. физики. 2007. Т.47. №5. С.817-828.
- Tikhomirov A., Stojunina T., Nekrutkin V. // J. of Statistical Planning and Inference. 2007. Vol.137. Issue 12. P.4031-4047.
- 12. Тихомиров А.С. // Вестник НовГУ. 2007. №44. С.51-54.
- Тихомиров А.С. Деп. в ВИНИТИ №68-В2007 от 24.01.2007.