УДК 621.382.323

Б.И.Селезнев, Л.М.Семенова

ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК СТРУКТУР СВЧ ПОЛЕВЫХ ТРАНЗИСТОРОВ НА АРСЕНИДЕ ГАЛЛИЯ

Институт электронных и информационных систем НовГУ

Diagnostics results of kvantovo-dimensional heterostructures on gallium arsenide, using Hall and ellipsometric measurements techniques under level-by-level etching, are represented. Estimations of influence of both technology factors and type of initial epitaxial structures on the channels resistance of field-effect transistors with Schottky-barrier are carried out. Substantiated option of structures type for switching-type transistor manufacturing is represented.

Введение

На современном этапе развития радиоустройств СВЧ все большее применение находят передающие, приемные и приемопередающие активные фазированные антенные решетки (АФАР) [1]. Ключевым элементом АФАР являются приемопередающие модули (ППМ), обеспечивающие управление по амплитуде и фазе распределения сигнала в апертуре решетки. Требования идентичности ППМ обусловлены принципом работы АФАР, обеспечить же выполнение этих требований по электрическим параметрам проще при использовании в качестве функционально законченных блоков монолитных интегральных схем. Одним из основных элементов ППМ является устройство, обеспечивающее управление сигнала по амплитуде, — аттенюатор. На практике чаще всего используются аттенюаторы на основе *p-i-n* диодов или полевых транзисторов с барьером Шотки (ПТШ) [2].

В настоящее время широкое применение нашли аттенюаторы на ПТШ. Преимущества их перед аттенюаторами на *p-i-n* диодах состоят не только в технологической возможности интеграции на кристалле всей схемы, т. е. создания монолитной схемы, но и в отсутствии потребляемого тока в цепи управления.

Применение гетероструктур (структур переменного состава AlGaAs/GaAs или AlGaAs/InGaAs) с селективным легированием вместо структур на GaAs позволяет достичь повышения СВЧ параметров полевых транзисторов с барьером Шотки. Это является следствием реализации в такой структуре механизма локализации электронов в тонком слое полупроводника (так называемый двумерный электронный газ). Наноразмерность проводящего слоя и его вытеснение в нелегированный материал приводят к существенному возрастанию подвижности электронов и скорости их насыщения, что благоприятно сказывается на работе транзистора в сантиметровом и миллиметровом диапазонах длин волн [3]. Уровень развития эпитаксиального наращивания в России позволяет получать гетероструктуры с плотностью электронов в двумерном проводящем слое до 2·10¹² см⁻² (более 3.10¹² см⁻² в случае «двусторонних» гетероструктур), которые могут служить исходным материалом для pHEMT (pseudomorphic high electron mobility transistor) с удельной плотностью тока 300 мА/мм.

Один из основных параметров, определяющих свойства аттенюатора, — потери при прохождении

сигнала через ПТШ, минимизация которых является довольно сложной и актуальной проблемой. Потери в ПТШ прежде всего связаны с конечным сопротивлением ключа: не равным нулю в открытом состоянии и не равным бесконечности в закрытом состоянии. Транзисторы, используемые в аттенюаторах в качестве ключей, должны иметь ток стока не больше 100 мкА при напряжении затвора 2,5-3 В.

В работе рассматриваются методики оценки качества исходных гетероструктур и рассматриваются возможности уменьшения сопротивления транзистора в открытом состоянии за счет использования современных гомо- и гетероэпитаксиальных структур на основе арсенида галлия.

Диагностика гетероструктур

В качестве тестовых структур, на которых опробованы методики диагностики, были использованы гетероэпитаксиальные структуры GaAs/GaAlAs/GaAs (так называемые HEMT-структуры) (рис.1).

Рис.1. Схематическое изображение гетероструктуры GaAs/GaAlAs/GaAs

Подвижность электронов и поверхностная концентрация — две ключевые характеристики гетероструктур, определяемые параметрами роста и составом слоев. Они связаны с характеристиками полевых транзисторов и являются мерой качества гетероструктур. Электрофизические параметры гетероструктур (поверхностное сопротивление R_s , поверхностная концентрация n_s , эффективная подвижность $\mu_{\ni\Phi}$) измерялись холловским методом Ван-дер-Пау при температурах 77 К и 300 К. Форма образца выбиралась в виде квадрата 8×8 мм. Контакты наносились вплавлением олова по углам квадрата. Магнитная индукция составляла 0,39 Тл [4]. Измеряемая гетероструктура резко неоднородна по проводимости: верхний высокопроводящий n^+ -слой GaAs, далее *n*-слой GaAlAs и слой двумерного газа с высокой проводимостью при 77 К, сравнимой с проводимостью n^+ -слоя. Измеряемые начальные значения электрофизических параметров при комнатной температуре в основном соответствуют параметрам n^+ -слоя, а при 77 К являются эффективными. Поэтому для определения параметров двумерного газа необходимо прецизионно удалить шунтирующий слой.

Послойное удаление n^+ -GaAs слоя проводилось анодным окислением с автоматическим контролем толщины анодного окисла по коэффициенту отражения лазерного излучения ($\lambda = 6328$ Å) в процессе окисления. В результате одного анодирования снимается слой толщиной $\Delta x = 0,75 \cdot d_{\rm OK}$ ($d_{\rm OK}$ — толщина анодного окисла).

Переход n^+ -GaAs — n-GaAlAs фиксировался по следующим наблюдениям: появление цветности; несмачиваемость поверхности GaAlAs в отличие от GaAs, n_S (300 K) = n_S (77 K).

В табл.1 приведены результаты измерений электрофизических характеристик для двух состояний образцов: начальные значения и после удаления шунтирующего n^+ -слоя GaAs.

Исследование сопротивления канала транзистора

Были исследованы транзисторы, изготовленные на гетероэпитаксиальных структурах AlGaAs/InGaAs/GaAs, и транзисторы, изготовленные на эпитаксиальных структурах арсенида галлия (поперечный разрез и топология исследуемых транзисторов приведены на рис.2 и 5). Проведен сравнительный анализ сопротивлений канала транзисторов.

Сопротивление ПТШ R_{VT} , Ом рассчитывается на начальном участке ВАХ транзистора, характеризующегося линейной зависимостью тока стока (I_c) от напряжения сток-исток (U_{cn}). Выходное сопротивление ПТШ, при отсутствии управления на затворе, складывается из двух сопротивлений:

$$R_{VT} = R_{\rm K} + R_{\rm OK},$$

где $R_{\rm K}$ — сопротивление канала ПТШ в открытом состоянии, Ом; $R_{\rm OK}$ — сопротивление омических контактов ПТШ (стока и истока), Ом. Для уменьшения сопротивления ПТШ необходимо уменьшать обе составляющие его сопротивления при сохранении высокочастотных свойств транзистора.

Сопротивление канала определяется следующими параметрами транзистора [5].

Таблица 1

Номер образца	<i>T</i> , K	Начальные значения			После снятия шунтирующего слоя		
		R_S , Ом/ \Box	n_S, cm^{-2}	μ_S , cm ² /B·c	R_S , Ом/ \Box	n_S, cm^{-2}	μ_S , $c M^2/B \cdot c$
1	300 77	124 60	$2.10^{13} \\ 6,3.10^{12}$	2570 16800	868 128	$1,2{\cdot}10^{12} \\ 1,1{\cdot}10^{12}$	5800 44100
2	300 77	137 63	$1,7{\cdot}10^{13} \\ 5,5{\cdot}10^{12}$	2700 2400	978 132	${1,1} \cdot 10^{12} \\ 1 \cdot 10^{12}$	5680 48400
3	300 77				1000 86	$0,8{\cdot}10^{12} \\ 1,2{\cdot}10^{12}$	7738 61000
4	300 77	103	3,7·10 ¹³	2000 52000	1500 146	$0,7{\cdot}10^{12} \\ 0,8{\cdot}10^{12}$	6500 54000
5	377 77		$2 \cdot 10^{13}$		1300 170	$\begin{array}{c} 0,63 \cdot 10^{12} \\ 0,6 \cdot 10^{12} \end{array}$	5100 41000

Электрофизические параметры гетероструктур GaAs/GaAlAs/GaAs (начальные) и двумерного газа (после снятия шунтирующего слоя)

Из табл.1 следует, что средние параметры двумерного электронного газа при 77 К составляют: $n_S \sim 1.10^{12}$ см⁻², $\mu_S \sim 50000$ см²/В·с.

Контроль толщины стравливаемого слоя $Ga_{1-x}Al_xAs$ и оценка состава (величины *x*) проводились с помощью эллипсометрических измерений при послойном травлении. Для этого применялся лазерный эллипсометр ($\lambda = 6328$ Å) [4].

Сравнение с теоретической номограммой дает x = 0.25, толщину слоя AlGaAs — 40 нм. Переход n^+ -GaAs–GaAlAs характеризуется равенством концентраций n_s (300 K) = n_s (77 K) = $0.63 \cdot 10^{12}$ см⁻², что дает концентрацию носителей заряда в слое GaAlAs $n = 1.6 \cdot 10^{17}$ см⁻³. 1. Конструкция транзистора, а именно ширина затвора (W_3) и длина канала (L_K). Минимальная длина канала ПТШ ограничивается технологией изготовления и составляет 3 мкм. Выбор максимальной ширины затвора ПТШ ограничивается рабочим частотным диапазоном.

2. Исходный материал. Сопротивление канала определяется характеристиками исходного материала (подвижностью µ и концентрацией носителей заряда *n*) и практически не может быть увеличено в процессе изготовления транзистора.

Для исследования влияния ширины затвора на сопротивление $R_{\rm K}$ по групповому комплекту шаблонов были изготовлены транзисторные структуры с различной шириной затвора (150, 300 и 600 мкм).

Рис.2. Транзистор, изготовленный на рНЕМТ-структуре: а) поперечный разрез; б) схематическое изображение топологии

Транзисторы изготавливались на структурах типа рНЕМТ (рис.2) на основе AlGaAs/InGaAs/GaAs, отличительной особенностью которых является наличие двумерного электронного газа (ДЭГ) в активном слое, характеризующегося высокой подвижностью носителей заряда порядка 6500 см²/В·с и их высокой концентрацией порядка 1,2-2·10¹² см⁻². Учитывая высокие значения произведения n·µ, можно предполагать, что сопротивление канала транзисторов должно быть меньшим по сравнению с транзисторами, изготовленными на других типах эпитаксиальных структур.

Вольтамперные характеристики для транзисторов, изготовленных на рНЕМТ-структуре, представлены на рис.3.

Значения сопротивления ПТШ, представленные на рис.4, имеют одинаковую составляющую сопротивление омических контактов $R_{\rm OK}$, которое

Рис.3. Усредненные ВАХ ПТШ с разной шириной затвора *W*₃: 1 — 150 мкм, 2 — 300 мкм, 3 — 600 мкм

равно 2-3 Ом, и его вклад не изменяет характера зависимости.

Для исследования возможности получения ключевых транзисторов с малым сопротивлением канала на эпитаксиальных структурах типа САГ-6БК (структура арсенида галлия марки 6БК) были изготовлены транзисторы четырех типов по различной технологии (рис.5), отличающейся в первую очередь уровнем начального тока стока в открытом состоянии, когда напряжение затвор-исток $U_{3N} = 0$. Измерены вольтамперные характеристики транзисторов, (типовую ВАХ см. на рис.6), а результаты расчета $R_{\rm K}$ на единичную ширину затвора W_3 , равную 1 мм (R_{K1}), представлены в табл.2. Ток стока насыщения I_{с нас} определяется по резкому снижению приращения тока при увеличению напряжения сток-исток, а U_{си нас} — напряжение насыщения; R_K — сопротивление канала транзистора на линейном участке ВАХ.

Рис.4. Зависимость сопротивления ПТШ в открытом состоянии от ширины затвора

Рис.5. Транзистор, изготовленный на эпитаксиальной структуре типа САГ-6БК: а) поперечный разрез; б) схематическое изображение топологии

U_{си}, В

Рис.6. Типовая ВАХ транзисторов на структуре САГ-6БК

Таблица 2 Выходное сопротивление ПТШ на эпитаксиальной структуре САГ-6БК в открытом состоянии

Тип	W_3	<i>I</i> _{с нас} , мА	$U_{\rm cu \ hac}, { m B}$	$R_{\rm K}$, Ом	$R_{\rm K1}$, Ом
Ι	50	20	1,0	33,65	1,68
II	100	26	0,8	26,64	2,66
III	150	22	1,0	35,24	5,29
IV	225	52	0,8	13,53	3,04

Обсуждение полученных результатов

Для ПТШ, изготовленных на структурах типа рНЕМТ, значение сопротивления $R_{\rm K}$ для разной ширины затвора воспроизводимо и соответствует уровню \approx 3 Ом/мм. Дальнейшее уменьшение $R_{\rm K}$ представляется достаточно проблематичным, так как сопротивление канала определяется характеристиками двумерного электронного газа — произведением $n \cdot \mu$, увеличение концентрации носителей заряда приводит к уменьшению их подвижности.

Для структур типа САГ-6БК сопротивление канала определяется не только характеристиками исходного материала (концентрация и подвижность электронов в активной области канала также являются предельными), но и сечением канала, поскольку канал в данном случае является объемным.

Как и ожидалось, наименьшим значением $R_{\rm K}$ обладают транзисторы с большим начальным током. Транзисторы на эпитаксиальных структурах типа САГ-6БК, изготовленные по различной технологии, отличаются в первую очередь уровнем начального тока стока в открытом состоянии ($U_{3\rm H} = 0$). Таким образом, для транзистора на структуре типа САГ-6БК, характеризующегося максимальным начальным уровнем тока стока для выбранной ширины затвора (табл.2), значение $R_{\rm K}$ составляет ~ 1,7 Ом/мм, что превосходит достигнутые значения $R_{\rm K}$ на более дорогих структурах типа рНЕМТ.

Заключение

Для диагностики квантово-размерных гетероструктур GaAs/GaAlAs/GaAs были использованы методики на основе холловских и эллипсометрических измерений при послойном травлении. Данные методики могут быть использованы и для диагностики гетероэпитаксиальных структур AlGaAs/InGaAs/GaAs.

На гетероэпитаксиальных и эпитаксиальных структурах на основе арсенида галлия изготовлены транзисторы и проведен сравнительный анализ сопротивлений канала транзисторов, изготовленных на разных типах структур.

Для СВЧ полевых транзисторов с барьером Шотки, изготовленных на гетероструктуре рНЕМТ, сопротивление канала в открытом состоянии при разной ширине затвора воспроизводимо и составляет около 3 Ом/мм.

Эпитаксиальные структуры типа САГ-6БК более предпочтительны для изготовления ключевых транзисторов, поскольку недороги и позволяют получать значения $R_{\rm K}$ менее 2 Ом/мм.

Вендик О.Г. // Соросовский образовательный журнал. 1997. №2. С.115-120.

- Твердотельные устройства СВЧ в технике связи / Л.Г.Гасанов, А.А.Липатов, В.В.Марков, Н.А.Могильчен-ко. М.: Радио и связь, 1988. 288 с., ил. Устинов В.М. и др. // Микроэлектроника. 1994. Т.23. №4. 2.
- 3. C.13-18.
- Seleznev B.I. // Third Testing and Computer Simulation in Science and Engineering. St. Petersburg, Russia, June 7-11. 1999. Vol.4064. P.308-315. Селезнев Б.И. // Петербургская электроника. 2005. 4.
- 5. Вып.3(44). С.4-12.