УДК 621.376.56

ЧАСТОТНАЯ РЕЖЕКЦИЯ ПОМЕХ В РЛС С КВАЗИНЕПРЕРЫВНЫМ РЕЖИМОМ ИЗЛУЧЕНИЯ И ПРИЕМА СИГНАЛОВ С ДВУХРОВНЕВОЙ НЕРЕГУЛЯРНОЙ СТРУКТУРОЙ СПЕКТРА

И.Н.Жукова, С.Д.Чеботарев

FREQUENCY INTERFERENCE REJECTION IN RADAR SYSTEMS WITH QUASICONTINUOUS MODE OF TRANSMISSION AND RECEPTION OF SIGNALS WITH NONREGULAR TWO-LEVEL ENERGY SPECTRUM

I.N.Zhukova, S.D.Chebotarev

Институт электронных и информационных систем НовГУ, Irina.Zhukova@novsu.ru

Исследуется метод частотной режекции помех, распределенных по задержке и локализованных в узком диапазоне доплеровских сдвигов частоты, с применением сигналов с псевдослучайным законом амплитудной манипуляции, многопозиционной фазовой манипуляцией и двухуровневой нерегулярной структурой огибающей спектра.

Ключевые слова: радиолокационные системы, сложные сигналы, квазинепрерывный режим, частотная режекция, доплеровский сдвиг частоты

This paper considers the method of frequency interference rejection of time-distributed clutter with narrow Doppler frequency shift. It supposes the usage of signals with pseudorandom amplitude-shift keying, multiple phase-shift keying, and nonregular two-level energy spectrum envelope.

Keywords: radar systems, wideband signals, quasicontinuous mode, frequency interference rejection, Doppler frequency shift

Введение

В радиолокационных станциях с квазинепрерывным режимом излучения и приема амплитуднофазоманипулированных сигналов большой длительности и малой средней скважности селекция движущейся цели (СДЦ) достигается фильтрацией сигнала в заданной доплеровской полосе частот [1]. Эффективность СДЦ повышается с увеличением базы сигнала.

На практике неограниченное повышение базы сигнала невозможно. Длительность зондирующего сигнала ограничивается временем контакта с целью. Кроме того, скорость движения цели предопределяет разрешающую способность сигнала по задержке, поскольку за время когерентного накопления сигнала цель не должна мигрировать из одного элемента дальности в другой.

В условиях ограничений базы сигнала необходимы законы модуляции и методы обработки, способные в РЛС с квазинепрерывным режимом излучения и приема решать задачу селекции скоростных целей на фоне интенсивных отражений от подстилающей поверхности.

Известны [2-4] методы синтеза непрерывных радиосигналов с многопозиционной фазовой манипуляцией и огибающей энергетического спектра с компонентами высокой и низкой интенсивности. Доплеровское смещение частоты между обнаруживаемым сигналом и пассивной помехой приводит к смещению их спектров и частичному «перекрытию» спектральных компонент с высокой интенсивностью. При частотной режекции спектральные компоненты высокой интенсивности пассивных помех вырезаются. В результате при небольших потерях энергии полезного сигнала значительно снижается энергия мешающих отражений. Отношение «сигнал/(шум+помеха)» повышается. Остаточный уровень помех из-за наличия спектральных компонент с низкой интенсивностью ограничивает рост отношения «сигнал/(шум+помеха)».

Псевдослучайная амплитудная манипуляция сигнала с многопозиционной фазовой манипуляцией и двухуровневой огибающей энергетического спектра, а также коммутация приемопередающего тракта РЛС, обеспечивающая прием эхо-сигналов в паузах излучения, разрушает форму спектра исходного сигнала.

В статье предлагается итерационный метод синтеза амплитудно-фазоманипулированных сигналов с двухуровневой нерегулярной структурой огибающей энергетического спектра. Оценивается изменение отношения «сигнал/(шум+помеха)» после частотной режекции помех.

Итерационный алгоритм синтеза сигналов с псевдослучайным законом амплитудной манипуляции, многопозиционной фазовой манипуляцией и двухуровневой псевдослучайной огибающей энергетического спектра

Пусть закон амплитудно-фазовой манипуляции синтезируемого сигнала описывается дискретной комплексной последовательностью

$$\dot{z}_n = x_{n/k_x} \exp(j \cdot \phi_n), \ n = 0...N - 1.$$
 (1)

В выражении (1) двоичная последовательность $x_i \in \{1,0\}, i=0...N_x-1$ произвольной структуры со средней скважностью Q_x определяет закон следования фазоманипулированных импульсов длиной k_x , $N=k_xN_x$. Дискретная последовательность $\varphi_n \in [-\pi,\pi]$, n=0...N-1 определяет закон изменения фазы.

Динамический диапазон среднеквадратических амплитудного уровней спектра $=\left|\sum_{n=1}^{N-1} \dot{z}_n \exp(-j2\pi nk/N)\right|$ оценивается выражени- $|Z_k|$ ем

$$\eta = \sqrt{\frac{\sum_{k=0}^{N-1} (1-b_{k/k_b}) \sum_{k=0}^{N-1} (b_{k/k_b} |\dot{Z}_k|^2)}{\sum_{k=0}^{N-1} b_{k/k_b} \sum_{k=0}^{N-1} (1-b_{k/k_b}) |\dot{Z}_k|^2)}} = \sqrt{(Q_b - 1) \frac{\sum_{k=0}^{N-1} (b_{k/k_b} |\dot{Z}_k|^2)}{\sum_{k=0}^{N-1} ((1-b_{k/k_b}) |\dot{Z}_k|^2)}}, (2)$$

где $b_i \in \{1,0\}, j=0...N_b-1$ — псевдослучайная двоичная последовательность средней скважностью Q_b и длиной N_b=N/k_b, задающая двухуровневую форму спектра сигнала. Параметр k_b определяет ширину спектральных компонент с высокой и низкой интенсивностью, т.е. число соседних спектральных отсчетов с близким по значению уровнем модуля спектральной плотности синтезируемого сигнала.

Последовательность \dot{z}_n с формой спектра, определяемой последовательностью b_j, синтезируется итерационной процедурой с числом итераций L.

На момент инициализации алгоритма синтеза устанавливаются случайные значения фаз φ_n последовательности \dot{z}_n .

Огибающая спектра $|\dot{Z}_k|$ исходной последовательности *ż_n* обладает некоторой начальной формой, отличной от закона изменения последовательности b_{k/k_b} . Приближения $|Z_k|$ к желаемому виду достигается преобразованием

$$\dot{Y}_k = b_{k/k_b} \dot{Z}_k. \tag{3}$$

Обратное преобразование Фурье над \dot{Y}_k определяет новую последовательность

$$\dot{y}_n = \frac{1}{N} \sum_{k=0}^{N-1} \dot{Y}_k \exp(j 2\pi k n/N).$$
 (4)

Поскольку амплитуда синтезируемого сигнала должна изменяться по закону последовательности x_i , возьмем из \dot{y}_n лишь информацию о фазе, игнорируя данные о ее модуле

$$\dot{z}_n = x_{n/k_x} \exp[j \cdot \arg(\dot{y}_n)].$$
(5)

Амплитудная манипуляция в (5) по закону искажает форму огибающей амплитудного $x_{n/k_{x}}$ спектра. Поэтому вычисления по выражениям (3)-(5) необходимо многократно повторять. По окончанию L итераций производится квантование фазы синтезированного сигнала на заданное число уровней.

Приведем пример синтеза. Закон следования импульсов будем определять последовательностью $x_i = \begin{cases} 1, d_i = 0 \\ 0, d_i \neq 0 \end{cases}$, где d_i — код Зингера, построенный

на основе первообразного неприводимого полинома $f(x)=1+x^2+4x^3$ над полем Галуа *GF*(5). Отметим, что двоичная последовательность x_i с параметрами $N_x=31, Q_x=5$ обладает корреляционной функцией с

постоянным уровнем боковых лепестков, что позволяет уменьшить амплитудную модуляцию на этапе вычисления \dot{y}_n и получить \dot{z}_n с большим значением п.

Закон изменения уровней огибающей энергетического спектра также зададим преобразованным к двоичному виду кодом Зингера, построенным на основе полинома $f(x) = 1 + 2x + 2x^2 + x^3 + 2x^4$ над полем Галуа GF(3). Двоичная последовательность b_i имеет параметры $N_b = 40, Q_b = 3$. Примем длину синтезируемого сигнала равной $N = 2N_b N_x = 2480$. Тогда $k_x = 80, k_b = 62$. Установим 32 уровня квантования фазы.

Изменение фазы φ_n синтезированного сигнала представлено на рис.1.

Рис.1. Последовательность фаз фл синтезированного сигнала

Амплитудный спектр сигнала (диаграмма 1 на рис.2) обладает двухуровневой структурой огибающей с $\eta = 18,1$ дБ. Изменение огибающей полностью совпадает с законом изменения последовательности (диаграмма 2 на рис.2).

Рис.2. Амплитудный спектр последовательности \dot{z}_n (кривая 1) и последовательность b_{k/k_b} (кривая 2), задающая его форму

Нормированная периодическая частотновременная корреляционная функция синтезированкодовой последовательности, $\chi_{m,v} = \left| \frac{1}{\|\|z\|^2} \sum_{n=0}^{N-1} \dot{z}_n \dot{z}_{n-m}^* \exp\left(-j\frac{2\pi}{N}nv\right) \right|, \quad \text{где} \quad \|z\|^2 = \sum_{n=0}^{N-1} |\dot{z}_n|^2$

— «энергия» последовательности \dot{z}_n за период N, представлена на рис.3. Функция $\chi_{m,v}$ обладает кнопочной формой. Среднеквадратический уровень боковых лепестков $\chi_{m,v}$ в плоскости «задержкачастота» составляет $1/\sqrt{N}$ и для рассматриваемой в примере синтезированной последовательности длиной *N* = 2480 равен –33,9дБ.

Рис.3. Функция неопределенности

Оценка изменения отношения «сигнал/(шум+помеха)» при корреляционной обработке с частотной режекцией помех

Рассмотрим выделение полезного сигнала, описываемого отсчетами комплексной огибающей $\dot{u}_i = a_u z_{i-m_u} \exp[j(2\pi i v_u/N + \varphi_u)]$ с амплитудой a_u , сдвигом по задержке m_u , доплеровской частоте v_u , начальной фазой φ_u , из аддитивной смеси $\dot{s}_i = \dot{u}_i + \dot{\xi}_i + \dot{\eta}_i$, где $\dot{\xi}_i = \sum_{c=1}^{C} a_c z_{i-m_c} \exp[j(2\pi i v_{\xi}/N + \varphi_c)]$ — отсчеты комплекс-

ной огибающей линейной смеси *C* сигналов с амплитудами a_c , дискретными задержками m_c , c=1,..C, нормированным доплеровским сдвигом частоты $v_{\xi} \neq v_u$, случайными начальными фазами φ_c , равномерно распределенными в диапазоне $[0,2\pi]$; $\dot{\eta}_i$ — отсчеты шума.

Обработка сигналов с частотной режекцией помех ведется многоканальным по задержке *m* и временному сдвигу частоты *v* устройством обработки и описывается, согласно [4], функцией отклика

$$R_{m,\nu} = \left| \sum_{k=0}^{N-1} \dot{S}_k \dot{Z}_{k-\nu}^* (1 - b_{(k-\nu)/k_b}) \exp(j 2\pi km/N) \right|, \ \nu \neq \nu, \ (6)$$

где Z_k — спектр опорного сигнала,

 $\dot{S}_k = \sum_{n=0}^{N-1} \dot{s}_n (1 - x_{n/k_x}) \exp(-j 2\pi nk/N)$ — спектр сигнала

после коммутации в приемном тракте.

Изменение энергии аддитивной смеси \dot{s}_i при выполнении частотной режекции отражает отношение

$$\mu = \frac{\sum_{k=0}^{N-1} |\dot{S}_k|^2}{\sum_{k=0}^{N-1} (1 - b_{(k-\upsilon)/k_b}) |\dot{S}_k|^2} = 1 + \frac{\eta_S^2}{Q_b - 1}, \quad (7)$$

где $\eta_S = \sqrt{\left(Q_b - 1\right) \frac{\sum_{k=0}^{N-1} (b_{k/k_b} |\dot{S}_k|^2)}{\sum_{k=0}^{N-1} ((1 - b_{k/k_b}) |\dot{S}_k|^2)}} -$ динамический

диапазон уровней спектральных компонент $|S_k|$.

Величина $\sqrt{\mu}$ характеризует снижение среднеквадратического значения $R_{m,v}$. Изменение μ в зависимости от Q_b для разных значений η_s представлено на рис.4.

Рис.4. Величина снижения среднеквадратического значения функции отклика в зависимости от скважности последовательности, задающей форму спектра сигнала

Потери энергии полезного сигнала \dot{u}_i при выполнении частотной режекции определяются отношением

$$\rho = \frac{\sum_{k=0}^{N-1} (1 - b_{(k-\upsilon)/k_b}) \dot{U}_k \Big|^2}{\sum_{k=0}^{N-1} |\dot{U}_k|^2}.$$
 (8)

Анализируя вероятность совпадения спектральных компонент $|\dot{U}_k|$ полезного сигнала со значениями $b_{(k-\upsilon)/k_b} = 0$, можно показать, что потери энергии полезного сигнала при частотной режекции зависят от средней скважности Q_b последовательности b_{k/k_b} и определяются $\rho = 1 - 1/Q_b$. Изменение отношения «сигнал/(шум+помеха)» после частотной режекции оценивается произведением ($\rho \sqrt{\mu}$). Изменение ($\rho \sqrt{\mu}$) в зависимости от Q_b для разных значений η_s представлено на рис.5.

Характер изменения $\rho\sqrt{\mu}$ в зависимости от Q_b при разных значениях η_s показывает, что изначально высокий динамический диапазон уровней компонент в спектре обрабатываемого сигнала позволяет обеспечить наибольшую эффективность частотной режекции. При этом с ростом Q_b выигрыш в отношении «сигнал/(шум+помеха)» при частотной режекции помех снижается.

$$\rho \sqrt{\mu}, \, d \overline{B}$$

 $15 \qquad \eta_s = 20 \, d \overline{B}$
 $10 \qquad 15 \, d \overline{B}$
 $5 \qquad 10 \, d \overline{B}$
 $2 \qquad 3 \qquad 4 \qquad 5 \qquad 6 \qquad 7 \quad Q_t$

Рис.5. Выигрыш в отношении «сигнал/(шум+помеха)» при частотной режекции помех

Проверим справедливость оценки выигрыша в отношении «сигнал/(шум+помеха)» при частотной режекции помех на примере выделения полезного сигнала с параметрами $m_{\mu} = 500$ и $v_{\mu} = 248$ из аддитивной смеси С = 80 помех с параметрами $a_c = 1$, $m_c = 450...529$, $v_{\xi} = 0$. Пусть мощность полезного сигнала на 18 дБ ниже суммарной мощности помех, а мощность шума в полосе сигнала пренебрежимо мала. Отметим, что полезный сигнал и сигналы помех полностью перекрываются по времени и отличаются лишь доплеровским сдвигом частоты.

Амплитудные спектры сигналов \dot{s}_i и \dot{u}_i , вычисленные после выполнения коммутации в приемном тракте, представлены на рис.6.

Рис.6. Сопоставление амплитудных спектров аддитивной смеси отражений (кривая 1) и полезного сигнала (кривая 2) после коммутации в приемном тракте с последовательностью (кривая 3), определяющей закон частотной режекции

Из сопоставления спектром аддитивной смеси (кривая 1 на рис.6) и полезного сигнала (кривая 2 на рис.6) видно, что у полезного сигнала спек-

R_{m,v}, дБ

тральные компоненты высокого уровня сопоставимы по величине со спектральными компонентами аддитивной смеси низкого уровня. Следует отметить, что динамический диапазон в спектре $|S_k|$ снизился после коммутации в приемном тракте РЛС до 15,5 дБ. Данное значение определяет эффективность дальнейшей временной режекции по закону последовательности, отображенной на рис.6 кривой 3.

В отсутствии частотной режекции вероятность обнаружения полезного сигнала мала. Отношение «сигнал/(шум+помеха)» составляет всего 12,5 дБ. Изменение уровня сигнала на выходе многоканального устройства обработки, отражаемое функцией отклика $R_{m,v}$, представлено на рис.7а.

При выполнении частотной режекции (функция отклика представлена на рис.7б) среднеквадратическое значение $R_{m,v}$ снизилось на 11,7 дБ, что полностью соответствует оценке (8). Потери энергии полезного сигнала составили 3,4 дБ. Отношения «сигнал/(шум+помеха)» возросло на 8,3 дБ, достигнув значения 20,8 дБ, что полностью совпало с оценкой р√µ (см. рис.5).

Выводы

Предложенный метод синтеза амплитуднофазоманипулированных сигналов с двухуровневой псевдослучайной формой огибающей энергетического спектра позволяет применить метод частотной режекции помех, распределенных по задержке и локализованных в узком диапазоне доплеровских чдвигов частоты. Полученные оценки изменения отношения «сигнал/(шум+помеха)» позволяют оценить эффективность частотной режекции помех в РЛС с квазинепрерывным режимом излучения и приема сигна-ПОВ

Исследования выполнены в рамках выполнения госзадания Минобрнауки.

Рис.7. Функция отклика: а) без частотной режекции; б) с частотной режекцией

- Гантмахер В.Е., Быстров Н.Е., Чеботарев Д.В. Шумоподобные сигналы. Анализ, синтез, обработка. СПб.: Наука и техника, 2005. 400 с.
- Быстров Н.Е., Жукова И.Н., Чеботарев С.Д. Синтез сложных сигналов с квазинепрерывным энергетическим спектром // Изв. вузов России. Радиоэлектроника. 2012. Вып.2. С.37-43.
- 3. Быстров Н.Е., Чеботарев С.Д. Итерационный алгоритм синтеза сигналов с квазинепрерывным спектром // Вестник НовГУ. Сер.: Техн. науки. 2014. №81. С.4-6.
- Быстров Н.Е., Чеботарев С.Д. Анализ и синтез сигналов с квазинепрерывным спектром // Успехи современной радиоэлектроники. 2014. № 3. С.72-75.

References

1. Gantmakher V.E., Bystrov N.E., Chebotarev D.V. Shumopodobnye signaly. Analiz, sintez, obrabotka

[Spread-spectrum signals. Analysis, synthesis and processing]. St. Petersburg, "Nauka i tekhnika" Publ., 2005. 400 p.

- Bystrov N.E., Zhukova I.N., Chebotarev S.D. Sintez slozhnykh signalov s kvazinepreryvnym energeticheskim spektrom [Synthesis of wideband signals with quasicontinuous energy spectrum]. Izvestiia vuzov Rossii. Radioelektronika, 2012, iss. 2, pp. 37-43.
- Bystrov N.E., Chebotarev S.D. Iteratsionnyi algoritm sinteza signalov s kvazinepreryvnym spektrom [Iterative algorithm of quasicontinuous energy spectrum signals synthesis]. Vestnik NovGU. Ser. Tekhnicheskie nauki – Vestnik NovSU. Issue: Engineering Sciences, 2014, no. 81, pp. 4-6.
- Bystrov N.E., Chebotarev S.D. Analiz i sintez signalov s kvazinepreryvnym spektrom [Analysis and synthesis of quasicontinuous spectrum signals]. Uspekhi sovremennoi radioelektroniki – Achievements of Modern Radioelectronics, 2014, no. 3, pp. 72-75.