Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Новгородский государственный университет имени Ярослава Мудрого» Институт электронных и информационных систем

Кафедра физики твердого тела и микроэлектроники

МИКРОЭЛЕКТРОНИКА И ТВЕРДОТЕЛЬНАЯ ЭЛЕКТРОНИКА

Учебный модуль по направлению подготовки 11.03.04 Электроника и наноэлектроника Профиль – Микроэлектроника и твердотельная электроника

Рабочая программа

Начальник учебного отдела

О.Б. Широколобова

Разработал:

доцент кафедры ФТТМ

В.Н. Петров

Принято на заседании кафедры ФТТМ

Протокол № 10 от 22. 05

Зав. кафедрой ФТТМ

Б.И. Селезнев

1 Цели и задачи учебного модуля

Целью учебного модуля (УМ) является формирование компетентности студентов в области современной полупроводниковой и функциональной микроэлектроники, способствующей становлению их готовности к решению задач профессиональной деятельности.

Основными задачами УМ являются:

- обучение студентов принципам действия и конструктивно-технологическим особенностям основных приборов твердотельной электроники и устройств интегральной микроэлектроники;
- формирование навыков в области исследования физических процессов, протекающих в полупроводниковых структурах;
- формирование знаний и практических умений, необходимых для определения основных параметров и характеристик полупроводниковых приборов и компонентов интегральных микросхем;
- формирование представлений об основных путях развития элементной базы электронной техники.

Ведущие идеи учебного модуля:

Практически вся электроника использует исключительно полупроводниковую твердотельную активную элементную базу – интегральные микросхемы.
 Понимание принципов действия и конструктивно-технологических особенностей базовых полупроводниковых структур позволит более корректно решать задачи расчета и проектирования электронных приборов.

2 Место учебного модуля в структуре ОП направления подготовки

Учебный модуль относится к вариативной части блока 1, читается в 5 семестре.

Для изучения модуля используются знания, полученные при изучении следующих модулей: «Математика», «Физика», «Теоретические основы электротехники», «Материалы электронной техники», «Физические основы электроники».

Знания и умения, полученные при изучении данного модуля, используются при изучении последующих модулей, таких как «Схемотехника», «Элементная база сверхбольших интегральных схем», а также при подготовке выпускной квалификационной работы.

3 Требования к результатам освоения учебного модуля

Процесс изучения УМ направлен на формирование следующих компетенций:

- ОПК-7 способность учитывать современные тенденции развития электроники, измерительной и вычислительной техники, информационных технологий в своей профессиональной деятельности;
- ПК-1 способность строить простейшие физические и математические модели приборов, схем, устройств и установок электроники и наноэлектроники различного функционального назначения, а также использовать стандартные программные средства их компьютерного моделирования.

В результате освоения УМ студент должен знать, уметь и владеть:

Код компетенции	Уровень освоения компетенции	Знать	Уметь	Владеть
ОПК-7	базовый	перспективы развития микроэлектроники		
ПК-1	базовый	физические процессы, лежащие в основе функционирования базовых полупроводниковых структур	определять основные параметры и характеристики полупроводниковых приборов и компонентов интегральных микросхем	навыками исследования физических процессов, протекающих в полупроводниковых структурах

4 Структура и содержание учебного модуля

4.1 Трудоемкость учебного модуля

В структуре УМ выделены следующие учебные элементы модуля (УЭМ) в качестве самостоятельных разделов:

- УЭМ1 Твердотельная электроника;
- УЭМ2 Микроэлектроника.

		Распределение по	Коды
Учебная работа (УР)	Всего	семестрам	формируемых
		5 сем.	компетенций
Трудоемкость модуля в зачетных	9	9	
единицах (ЗЕ)			
Распределение трудоемкости по	324	324	
видам УР в академических часах			
(АЧ):			
1) УЭМ1 Твердотельная электроника:	72	72	ПК-1
- лекции	18	18	
- практические занятия	54	54	
- лабораторные работы	-	-	
- в т.ч. аудиторная СРС	18	18	
- внеаудиторная СРС	54	54	
2) УЭМ2 Микроэлектроника:	72	72	ОПК-7, ПК-1
- лекции	36	36	
- практические занятия	36	36	
- лабораторные работы	-	-	
- в т.ч. аудиторная СРС	18	18	
- внеаудиторная СРС	54	54	

		Распределение по	Коды	
Учебная работа (УР)	Всего	семестрам	формируемых	
		5 сем.	компетенций	
Расчетно-графическая работа	36	36	ПК-1	
Аттестация:				
- экзамен	36	36	ОПК-7, ПК-1	

4.2 Содержание и структура разделов учебного модуля

УЭМ1 Твердотельная электроника

1.1 Контакт металл – полупроводник

Предмет дисциплины и ее задачи. Основные этапы развития электроники. Классификация изделий твердотельной электроники. Полупроводниковые приборы как основные элементы микроэлектроники. Материалы твердотельной электроники.

Равновесие в электронных системах. Зонная диаграмма перехода металл — полупроводник. Барьер Шоттки. Емкость контакта металл — полупроводник. Вольт-амперная характеристика барьера Шоттки. Омические контакты: туннельные контакты и омические контакты Шоттки. Поверхностные явления на контактах металл — полупроводник.

1.2 Электронно-дырочный (р-п) переход

Полупроводник с неоднородным распределением примеси. Уравнение Пуассона для неоднородно легированного полупроводника. Приближение квазинейтральности. Энергетическая диаграмма p-n перехода.

Резкий p-n переход со ступенчатым распределением примеси. Плавный p-n переход с линейным распределением примеси. Барьерная емкость p-n перехода.

Токи через p-n переход: инжекция и экстракция подвижных носителей заряда.

Процессы накопления заряда, диффузионная емкость p-n перехода. Переходные процессы в диоде.

Основные приборы на основе p-n перехода — выпрямительный диод, импульсный диод, стабилитрон, варикап: принцип действия, конструкция, основные параметры, применение.

1.3 Биполярные транзисторы

Структура, принцип действия биполярного транзистора. Основные статические характеристики при различных включениях.

Процессы переноса неосновных носителей заряда через базу биполярного транзистора, ток связи. Модель Эберса — Молла.

Частотные характеристики биполярного транзистора. Импульсный режим работы биполярного транзистора. Переходные процессы в биполярном транзисторе.

1.4 Полевые транзисторы с управляющим р-п переходом

Структура и принцип действия полевого транзистора с управляющим p-n переходом. Статические характеристики полевого транзистора с управляющим p-n переходом.

1.5 МДП-транзисторы

Идеальная структура металл — диэлектрик — полупроводник (МДП). Энергетические диаграммы МДП-структуры в режимах обогащения, обеднения и инверсии. Пороговое напряжение.

Структура и принцип действия МДП-транзистора. Транзисторы с индуцированным и встроенным каналом. Вольт-амперные характеристики МДП-транзистора. Перекрытие канала.

УЭМ2 Микроэлектроника

2.1 Полупроводниковые интегральные микросхемы

Микроэлектроника как этап развития электроники и одно из ее основных направлений. Сочетание физического, технологического и схемотехнического аспектов микроэлектроники. Основные цели и задачи микроэлектроники.

Классификация по технологическому признаку: полупроводниковые и гибридные микросхемы. Микросхемы на биполярных и МДП-транзисторах. Цифровые и аналоговые микросхемы. Классификация по степени интеграции. Особенности полупроводниковых интегральных микросхем. Методы изоляции элементов: изоляция p-n переходом, диэлектрическая и комбинированная изоляция.

2.2 Компоненты полупроводниковых интегральных схем

Биполярные полупроводниковые структуры. Транзисторы n-p-n структуры. Особенности интегральной транзисторной структуры. Транзисторные структуры p-n-p типа: горизонтальный и подложечный транзисторы. Комплементарные транзисторы. Составные транзисторы. Многоэмиттерные и многоколлекторные транзисторные структуры. Транзисторы Шоттки. Интегральные диоды на основе p-n перехода. Диодное включение биполярного транзистора. Диоды на основе барьера Шоттки. Структуры полевых транзисторов для интегральных микросхем: транзисторы с управляющим p-n переходом и МДП-транзисторы. Самоизоляция МДП-структур. Комплементарные МДП-структуры, тиристорный эффект. Диффузионные резисторы. Интегральные конденсаторы: диффузионные, МДП- и МДМ-конденсаторы.

2.3 Основные схемотехнические структуры цифровых биполярных микросхем

Простой транзисторный ключ. Резисторно-транзисторная логика, диодно-транзисторная логика, транзисторно-транзисторная логика, эмиттерно-связанная логика, интегральная инжекционная логика: основные структуры логических элементов, расчет параметров логических элементов.

2.4 Логические элементы МДП интегральных схем

Реализация логических функций на МОП-транзисторах. Логические элементы на основе однотипных МОП-транзисторов: элемент с обогащенной, квазилинейной и обедненной нагрузкой. Расчет параметров логических элементов, особенности проектирования топологии логического элемента. Логические элементы на комплементарных МОП транзисторах.

2.5 Аналоговые интегральные микросхемы

Усиление напряжения с помощью транзистора. Особенности реализации усилителей в интегральном исполнении. Дифференциальный каскад. Эталон тока. Выходные каскады аналоговых интегральных микросхем.

2.6 Перспективные элементы и предельные возможности интегральной микроэлектроники

Физические ограничения на уменьшение размеров элементов интегральных микросхем. Минимальные рабочие напряжения. Минимальные рабочие токи. Электрическая прочность тонких слоев и пленок. Предельная плотность размещения транзисторов в интегральных микросхемах.

Технологические ограничения на уменьшение размеров элементов интегральных микросхем.

Тепловые ограничения увеличения плотности размещения активных элементов в интегральных микросхемах.

Полевые транзисторы на арсениде галлия. Транзисторы на основе гетероструктур (НЕМТ-транзисторы).

Календарный план, наименование разделов учебного модуля с указанием трудоемкости по видам учебной работы представлены в технологической карте учебного модуля (приложение Б).

4.3 Организация изучения учебного модуля

Методические рекомендации по организации изучения УМ даются в Приложении А.

5 Контроль и оценка качества освоения учебного модуля

Контроль качества освоения студентами УМ и его составляющих осуществляется непрерывно в течение всего периода обучения с использованием балльно-рейтинговой системы (БРС), являющейся обязательной к использованию всеми структурными подразделениями университета.

Для оценки качества освоения модуля используются формы контроля: текущий – регулярно в течение всего семестра, рубежный – на 9 неделе семестра, и семестровый (в виде экзамена) – по окончании изучения УМ.

Рубежная аттестация на 9 неделе проводится по результатам рубежного контроля УЭМ1. Пороговому уровню соответствует 87 баллов, максимальное количество баллов – 175.

На экзамен выносятся вопросы и задания по всем учебным элементам. Максимальное количество баллов, получаемое на экзамене, — 50. Максимальное количество баллов за РГР — 50. Максимальное количество баллов по модулю — 450.

Оценка качества освоения учебного модуля осуществляется с использованием фонда оценочных средств, разработанного для данного модуля, по всем формам контроля в соответствии с Положением «Об организации учебного процесса по основным образовательным программам высшего профессионального образования» и Положением «О фонде оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации студентов и итоговой аттестации выпускников». Содержание видов контроля и их график отражены в технологической карте учебного модуля (Приложение Б).

6 Учебно-методическое и информационное обеспечение

Учебно-методическое и информационное обеспечение учебного модуля представлено Картой учебно-методического обеспечения (Приложение Г).

7 Материально-техническое обеспечение учебного модуля

Для осуществления образовательного процесса по модулю используется лекционная аудитория, оборудованная мультимедийными средствами.

Приложения (обязательные):

- А Методические рекомендации по организации изучения учебного модуля
- Б Технологическая карта
- В Паспорт компетенций
- Г Карта учебно-методического обеспечения УМ

Приложение A (обязательное)

Методические рекомендации по организации изучения учебного модуля «Микроэлектроника и твердотельная электроника»

Учебный модуль «Микроэлектроника и твердотельная электроника» разделен на два учебных элемента модуля (УЭМ): «Твердотельная электроника» и «Микроэлектроника». В рамках модуля предусмотрены лекционные и практические занятия.

В таблице А.1 отражены разделы модуля, технологии и формы проведения занятий, задания по самостоятельной работе студента и ссылки на необходимую литературу.

А.1 Методические рекомендации по теоретической части учебного модуля

Теоретическая часть модуля направлена на формирование системы знаний о твердотельной электронике и микроэлектронике. Основное содержание теоретической части излагается преподавателем на лекционных занятиях, а также усваивается студентом при знакомстве с дополнительной литературой, которая предназначена для более глубокого овладения знаниями основных дидактических единиц соответствующего раздела и указана в таблице А.1. Перед началом занятия по некоторым темам может проводиться опрос (15 мин.).

Экзамен по УМ делится на теоретическую и практическую части. Теоретическая часть проводится в форме устных ответов на вопросы билета. На практической части студенты решают задачи по УЭМ1 или УЭМ2.

Пример экзаменационного билета.

Новгородский государственный университет имени Ярослава Мудрого Институт электронных и информационных систем Кафедра физики твердого тела и микроэлектроники

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № по модулю **Микроэлектроника и твердотельная электроника**

- 1 Вольт-амперные характеристики перехода металл полупроводник.
- 2 Структура биполярного интегрального n-p-n транзистора с изоляцией «Изопланар».
- 3 Резкий кремниевый p—n переход имеет примесные концентрации $N_A = 10^{15} \text{ cm}^{-3}$ и $N_D = 2 \cdot 10^{17} \text{ cm}^{-3}$. Рассчитать максимальную напряженность электрического поля в области объемного заряда при смещении на переходе -10 B.

Зав.	кафедрой ФТ	TM	
«	»	_ 20	_Γ.

Б.И.Селезнев

А.2 Методические рекомендации по практическим занятиям

Цель практических занятий — формирование у студентов умений определять основные параметры и характеристики полупроводниковых приборов и компонентов интегральных микросхем.

Таблица А.1 - Организация изучения учебного модуля «Микроэлектроника и твердотельная электроника»

	<u> </u>		
Раздел модуля	Технология и форма проведения занятий	Задания на СРС	Дополнительная литература и интернет-ресурсы
УЭМ1 Твердотельная э	1	<u> </u>	
1.1 Контакт металл — полупроводник 1.2 Электронно-дырочный (р-п) переход 1.3 Биполярные транзисторы 1.4 Полевые транзисторы с управляющим р-п переходом 1.5 МДП-транзисторы	- вводная лекция - информационная лекция - решение задач	 изучение дополнительной литературы решение задач 	1 Протасов Ю.С. Твердотельная электроника: учеб. пособие для вузов. — М.: Издательство МГТУ им. Н.Э.Баумана, 2003. — 479 с. 2 Малер Р. Элементы интегральных схем / Р.Малер, Т.Кейминс; пер. с 4 англ. — М.: Мир, 1989. 3 Тугов Н. М. Полупроводниковые приборы / Н.М.Тугов, Б.А.Глебов, Н.А.Чарыков. — М.: Энергоатомиздат, 1990. 4 Росадо Л. Физическая электроника и микроэлектроника / Пер. с испан. — М.: Высш. Шк., 1991. 5 Ферри Д. Электроника ультрабольших интегральных схем / Д.Ферри, Л.Эйкерс, Э.Гринич; пер. с англ. — М.: Мир, 1991. 6 Терехов В. А. Задачник по электронным приборам : учеб. пособие 3-е изд., перераб. и доп СПб. ; М ; Краснодар : Лань, 2003 276с. 7 Гуртов В.А. Твердотельная электроника : учеб. пособие для вузов 2-е изд.,доп М. : Техносфера, 2007 406с.
УЭМ2 Микроэлектрон	ика		
2.1Полупроводниковые интегральные микросхемы 2.2 Компоненты полупроводниковых интегральных схем	 информационная лекция проведение опроса информационная лекция проведение опроса 	изучение дополнительной литературыизучение дополнительной литературы	 Коледов Л. А. Технология и конструкция микросхем, микропроцессоров и микросборок: учебное пособие для вузов. – СПб.: Лань, 2009 (2008). – 398 с. Степаненко И. П. Основы микроэлектроники: учебн. пособие для вузов. – М.: Лаборатория базовых знаний, 2003 (2001). – 488 с. Коваленко А.А. Основы микроэлектроники / А.А.Коваленко,

Раздел модуля	Технология и форма проведения занятий	Задания на СРС	Дополнительная литература и интернет-ресурсы
2.3 Основные схемотехнические структуры цифровых биполярных микросхем 2.4 Логические элементы МДП интегральных схем 2.5 Аналоговые интегральные микросхемы 2.6 Перспективные элементы и предельные возможности интегральной	- информационная лекция - решение задач - информационная лекция - решение задач - информационная лекция - решение задач - обзорная лекция	 изучение дополнительной литературы решение задач изучение дополнительной литературы литературы литературы 	М.Д.Петропавловский. – М.: Академия, 2006. – 240 с. 4 Ферри Д. Электроника ультрабольших интегральных схем / Д.Ферри, Л.Эйкерс, Э.Гринич; пер. с англ. – М.: Мир, 1991. 5 Аваев Н. А. Основы микроэлектроники / Н.А.Аваев, Ю.Е.Наумов, В.Т.Фролкин. – М.: Радио и связь, 1991. – 287 с. 6 Алексенко А. Г. Основы микросхемотехники / А.Г.Алексенко, И.И.Шагурин. – 3-е изд., перераб. и доп. – М.: Лаборатория базовых знаний, 2002. – 448с. 7 Пасынков В. В. Полупроводниковые приборы: учебник для вузов / В.В.Пасынков, Л.К.Чиркин. – 4-е изд., перераб. и доп. – М.: Высш. шк., 1987 478 с. 8 Шур М. Современные приборы на арсениде галлия / Пер. с англ. – М.: Мир, 1991.
микроэлектроники Расчетно- графическая работа	– консультации	– выполнение РГР	1 Расчет основных параметров и характеристик полупроводниковых структур. Методическое пособие / Автсост. В.Н. Петров; НовГУ. – В. Новгород, 2007. – 51 с.

Практические занятия в большинстве своем строятся следующим образом:

- 20% аудиторного времени отводится на объяснение решения типовой задачи у доски;
- 70% аудиторного времени самостоятельное решение задач студентами;
- 10% аудиторного времени в конце текущего занятия разбор типовых ошибок.

А.3 Методические рекомендации по самостоятельной работе студентов

Аудиторная и внеаудиторная самостоятельная работа студентов включает в себя изучение дополнительной литературы, решение задач, выполнение РГР и подготовка к экзамену.

При изучении дополнительной литературы особое внимание нужно уделять изучаемым вопросам, ориентируясь на следующие вопросы, используемые при проведении устных **опросов** (разделы 2.1 и 2.2):

- Что представляет собой интегральная схема (ИС)?
- В чем отличие полупроводниковых ИС от гибридных?
- Особенности полупроводниковых ИС.
- Что значит пленочная ИС?
- Классификация ИС по степени интеграции.
- Что является элементом и компонентом ИС?
- Назначение цифровых ИС.
- Назначение аналоговых ИС.
- Сравнение технологий производства ИС.
- Активные элементы полупроводниковых ИС.
- Основные параметры ИС.
- Методы изоляции транзисторных структур.
- Функции диодов в ИС.
- Схемы диодного включения транзистора.
- Определение интегрального резистора.
- Определение интегрального конденсатора.
- Особенности интегральной транзисторной структуры.
- Горизонтальные и подложечные интегральные транзисторы.
- Комплементарные транзисторы.
- Многоэмиттерные и многоколлекторные транзисторные структуры.
- Транзисторы Шоттки.
- Интегральные диоды на основе р-п перехода.
- Диоды на основе барьера Шоттки.
- Интегральные полевые транзисторы с управляющим p-n переходом и МДПтранзисторы.
- Самоизоляция МДП-структур.
- Комплементарные МДП-структуры.
- Тиристорный эффект.

На самостоятельное решение студентам предлагаются **разноуровневые** задачи №№ 7.1 - 7.133, 8.1 – 8.227 из следующего пособия: Терехов В. А. Задачник по электронным приборам : учеб. пособие. - 3-е изд., перераб. и доп. - СПб. ; М ; Краснодар : Лань, 2003. - 276с. В данном пособии разобрано решение типовых задач.

Цель **расчетно-графической работы** — освоение и закрепление навыков исследования физических процессов, протекающих в полупроводниках и расчета параметров полупроводниковых структур.

В процессе выполнения работы студент должен:

- а) освоить и применить на практике методы расчета параметров полупроводниковых структур;
 - б) выбрать и обосновать модель исследуемой структуры;
 - в) выполнить расчет характеристик структуры в соответствии с выбранной моделью.

Тематика $P\Gamma P$ – исследование характеристик различных полупроводниковых структур. Пример задания на $P\Gamma P$.

Задание на расчетно-графическую работу

по модулю Микроэлектроника и твердотельная электроника Вариант \mathfrak{N}_{2}

Тема: Исследование вольт-амперных характеристик идеального барьера Шотки

Задание: Рассчитайте и постройте семейство вольт—амперных характеристик идеального барьера Шотки для разных концентраций легирующей примеси в подложке. Постройте зависимости теплового тока барьера Шотки от смещения на барьере при разных концентрациях легирующей примеси. Сравните вольт—амперные характеристики диода Шотки с учетом и без учета зависимости теплового тока от смещения на контакте металл — полупроводник.

В качестве металла используется вольфрам (работа выхода 4.5 эВ), в качестве полупроводника — кремний, легированный донорной примесью. Концентрация примеси в подложке принимает значения 10^{14} см⁻³, 10^{15} см⁻³, 10^{16} см⁻³, 10^{17} см⁻³ и 10^{18} см⁻³.

Площадь барьера Шотки примите равной $4\cdot10^{-6}~{\rm cm}^2$. Расчет выполните для температуры 300 К.

Примерные вопросы для подготовки к экзамену.

- Классификация изделий твердотельной электроники. Материалы твердотельной электроники.
- Равновесие в электронных системах: система металл полупроводник, неоднородно легированный полупроводник.
- Энергетическая диаграмма системы металл полупроводник.
- Распределение электрического поля, потенциала и заряда в системе металл полупроводник.
- Контакт металл полупроводник при внешнем смещении. Емкость перехода металл — полупроводник.
- Вольт-амперные характеристики перехода металл полупроводник.
- Барьер Шоттки.

- Омические контакты: омические контакты Шоттки.
- Омические контакты: туннельные омические контакты.
- Поверхностные состояния.
- Влияние поверхностных состояний на свойства перехода металл полупроводник.
- Полупроводник с неоднородным распределением примеси: энергетическая диаграмма, потенциал в кристалле, электрическое поле в кристалле.
- Полупроводник с неоднородным распределением примеси: связь между концентрацией свободных носителей заряда и потенциалом.
- Уравнение Пуассона для неоднородно легированного полупроводника.
- Приближение квазинейтральности.
- Образование р–п перехода в кристалле полупроводника.
- Резкий р-n переход со ступенчатым распределением примеси: распределение заряда, концентрации подвижных носителей заряда, электрического поля и потенциала.
- Резкий р–п переход со ступенчатым распределением примеси: контактная разность потенциалов.
- Плавный переход с линейным распределением примеси: распределение заряда, концентрации подвижных носителей заряда, электрического поля и потенциала.
- Плавный переход с линейным распределением примеси: контактная разность потенциалов.
- p–n переход при обратном смещении: ширина обедненной области и максимальная напряженность поля.
- Барьерная емкость резкого р–п перехода.
- Барьерная емкость р–п перехода при произвольном распределении примеси.
- Граничные значения концентрации неосновных носителей заряда в р–п переходе.
- Уравнение непрерывности для идеального диода.
- Вольт-амперная характеристика для диода с длинной базой.
- Вольт-амперная характеристика для диода с короткой базой.
- Токи, обусловленные областью объемного заряда.
- Пробой р–п перехода.
- Варикапы.
- Стабилитроны.
- Выпрямительные диоды.
- Процессы накопления заряда в диоде.
- Переходные процессы в диоде.
- Диффузионная емкость диода.
- Принцип работы биполярного транзистора.
- Основные статические вольт-амперные характеристики биполярного транзистора.
- Коэффициент инжекции эмиттера биполярного транзистора.
- Коэффициент переноса биполярного транзистора.
- Модель Эберса Молла биполярного транзистора.
- Эффект Эрли.
- Высокий уровень инжекции.

- Влияние сопротивлений квазинейтральных областей на работу биполярного транзистора.
- Токи при малых смещениях на эмиттерном переходе.
- Модель Гуммеля Пуна.
- Частотные свойства биполярного транзистора.
- Переходные процессы в биполярном транзисторе.
- МОП-структура при тепловом равновесии: поверхностный потенциал, поверхностная концентрация подвижных носителей заряда, режимы работы структуры.
- Неравновесное состояние МОП-структуры: обедненный слой, заряд обедненного слоя, заряд подвижных носителей заряда в инверсном слое, пороговое напряжение.
- МОП-транзистор: принцип работы.
- МОП-транзистор: общее уравнение для тока стока.
- МОП-транзистор: модель транзистора, не учитывающая изменение заряда обеденной области вдоль канала.
- Основные понятия и определения интегральных схем. Классификация интегральных схем по конструктивно-технологическим признакам.
- Основная структура биполярного интегрального n-p-n транзистора изоляцией p-n переходом.
- Структура биполярного интегрального n-p-n транзистора с изоляцией «Изопланар».
- Многоэмиттерные транзисторы.
- Биполярные транзисторы с диодами Шоттки.
- Многоколлекторные транзисторы.
- Интегральные p-n-р транзисторы: горизонтальная структура.
- Интегральные p-n-р транзисторы: подложечные транзисторы.
- Диоды биполярных интегральных схем.
- Интегральные конденсаторы.
- Интегральные резисторы.
- Логические элементы. Основные параметры и характеристики логических элементов.
- Логический элемент резисторно-транзисторной логики.
- Диодно-транзисторная логика.
- Логический элемент транзисторно-транзисторной логики с простым инвертором.
- Логический элемент транзисторно-транзисторной логики со сложным инвертором.
- Транзисторно-транзисторная логика с диодами Шоттки.
- Эмиттерно-связанная логика.
- Интегральная инжекционная логика.
- Интегральная инжекционная логика с диодами Шоттки.
- Логические элементы на основе МОП-транзисторов. Обобщенная структура логических элементов.
- Методика расчета передаточной характеристики инвертора, построенного на основе МОП-транзисторов.

Задачи экзаменационных билетов аналогичны задачам, разбираемым на практических занятиях. Пример решения подобной задачи можно взять из пособия: Терехов В.А. Задачник по электронным приборам: учеб. пособие. - 3-е изд., перераб. и доп. - СПб.; М.; Краснодар: Лань, 2003. - 276с.

Комплект заданий на РГР и комплект экзаменационных билетов представлены в приложениях к фонду оценочных средств модуля.

Приложение Б (обязательное)

Технологическая карта

учебного модуля «Микроэлектроника и твердотельная электроника»

семестр – 5, 3E-9, вид аттестации – экзамен, акад.часов – 324, баллов рейтинга – 450

			Трудо	ремко	сть, ак.ч	нас	Форма текущего контроля	Максим.
№ и наименование раздела учебного модуля, КП/КР	сем.	Ауди	иторн	ые зан	нятия		успеваемости	кол-во
ле и наименование раздела учестого модуля, кті/кт		ЛЕК	ПЗ	ПР	ACPC	CPC	(в соответствии с	баллов
		JILK		J11			паспортом ФОС)	рейтинга
УЭМ1 Твердотельная электроника	1-9	18	54		18	54		175
1.1 Контакт металл – полупроводник	1	4	4		2	4	разноуровневые задачи	35
1.2 Электронно-дырочный (р-п) переход	2-3	4	12		5	12	разноуровневые задачи	35
1.3 Биполярные транзисторы	4-5	4	12		5	12	разноуровневые задачи	35
1.4 Полевые транзисторы с управляющим р-п переходом	6-7	3	13		3	13	разноуровневые задачи	35
1.5 МДП-транзисторы	8-9	3	13		3	13	разноуровневые задачи	35
Рубежный контроль	9		Рубежная аттестация – не менее 87 из 175 баллов					
УЭМ2 Микроэлектроника	10-18	36	36		18	54		175
2.1Полупроводниковые интегральные микросхемы	10-11	8	8		1	15	опрос	35
2.2 Компоненты полупроводниковых интегральных схем	12-13	8	8		1	15	опрос	35
2.3 Основные схемотехнические структуры цифровых	14	4	4		4	8	разноуровневые задачи	35
биполярных микросхем								
2.4 Логические элементы МДП интегральных схем	15	4	4		2	8	разноуровневые задачи	35
2.5 Аналоговые интегральные микросхемы	16	4	4		2	8	разноуровневые задачи	35
2.6 Перспективные элементы и предельные возможности	17	8						
интегральной микроэлектроники								
Расчетно-графическая работа	18		8		8	36	расчетно-графическая работа	50
Семестровый контроль	сессия					36	экзамен	50
Итого:		54	90		36	180		450

Приложение В (обязательное)

Паспорт компетенций

ОПК-7 Способность учитывать современные тенденции развития электроники, измерительной и вычислительной техники, информационных технологий в своей профессиональной деятельности

Уро	Уро Показатели Оценочная шкала					
вни		удовлетворительно хорошо отлично				
Базовый	Имеет представление о перспективах развития микроэлектроники	Испытывает трудности при демонстрации знаний о перспективах развития микроэлектроники	Допускает неточности при демонстрации знаний о перспективах развития микроэлектроники	Имеет целостное представление о перспективах развития микроэлектроники		

ПК-1 — Способность строить простейшие физические и математические модели приборов, схем, устройств и установок электроники и наноэлектроники различного функционального назначения, а также использовать стандартные программные средства их компьютерного моделирования

Уро	Показатели	Оценочная шкала					
вни		удовлетворительно	хорошо	отлично			
Базовый	Знает и понимает физические процессы, лежащие в основе функционирования базовых полупроводниковых структур Умеет определять основные параметры и характеристики полупроводниковых приборов и компонентов интегральных микросхем	Испытывает трудности при объяснении физических процессов Испытывает трудности в определении параметров и характеристик	Недостаточно четко объясняет физические процессы Допускает неточности при определении параметров и характеристик	Четко объясняет физические процессы Способен четко определить параметры и характеристики			
	Владеет навыками исследования физических процессов, протекающих в полупроводниковых структурах	Испытывает затруднения при исследовании физических процессов	Допускает неточности при исследовании физических процессов	Способен провести самостоятельное исследовании физических процессов			

Приложение Г (обязательное)

Карта учебно-методического обеспечения

Учебного модуля «Микроэлектроника и твердотельная электроника»

Направление 11.03.04 Электроника и наноэлектроника

Формы обучения очная

Курс <u>3</u> Семестр <u>5</u>

Часов: всего <u>324</u>, лекций <u>54</u>, практ. зан. <u>90</u>, лаб. раб. -, СРС <u>180</u>, в т.ч. 36 – экзамен.

Обеспечивающая кафедра: ФТТМ

Таблица Г.1- Обеспечение учебного модуля учебными изданиями

Библиографическое описание издания (автор, наименование, вид, место и год издания, кол. стр.)	Кол. экз. в библ. НовГУ	Наличие в ЭБС
Учебники и учебные пособия		
1 Спиридонов О. П. Физические основы твердотельной электроники: учеб. пособие для вузов М.: Высшая школа, 2008 190с.	12	
2 Ефимов И. Е. Основы микроэлектроники: учебник / И. Е. Ефимов, И. Я. Козырь 3-е изд., стер. – СПб.; М.; Краснодар: Лань, 2008 383с.	26	
Учебно-методические издания		
1 Рабочая программа модуля «Микроэлектроника и твердотельная электроника» /Автсост. В.Н.Петров; НовГУ им. Ярослава Мудрого. – В.Новгород, 2017. – 18 с.		
2 Электроника и микроэлектроника: метод. указания к лаб. работам /сост.: Г.В.Гудков, И.С.Телина; НовГУ им. Ярослава Мудрого. — В.Новгород, 2016. — 64 с.	10	

Таблица Г.2 – Информационное обеспечение учебного модуля

Название программного продукта, Интернет-ресурса	Электрон-	Примеча-
ттазвание программного продукта, интернет-ресурса	ный адрес	ние

Таблица Г.3 – Дополнительная литература

Библиографическое описание издания (автор, наименование, вид, место и год издания, кол. стр.)	Кол. экз. в библ. НовГУ	Наличие в ЭБС
1 Терехов В.А. Задачник по электронным приборам: учеб. пособие 3-е изд., перераб. и доп СПб.; М.; Краснодар: Лань, 2003 276с.	100	
2 Гуртов В.А. Твердотельная электроника: учеб. пособие для вузов 2-е изд,доп М.: Техносфера, 2007 (2005). – 406 с.	5	

Продолжение таблицы Г.3

Библиографическое описание издания	Кол. экз. в	Наличие в
(автор, наименование, вид, место и год издания, кол. стр.)	библ.	ЭБС
	НовГУ	
3 Коледов Л. А. Технология и конструкция микросхем,	36	
микропроцессоров и микросборок: учебное пособие для вузов.		
– СПб.: Лань, 2009 (2008). – 399 c.		
4 Степаненко И.П. Основы микроэлектроники: учебн. пособие	20	
для вузов. – М.: Лаборатория базовых знаний, 2003 (2001) . –		
488 c.		
5 Алексенко А.Г. Основы микросхемотехники / А.Г.Алексенко,	12	
И.И.Шагурин. – 3-е изд., перераб. и доп. – М.: Лаборатория		
базовых знаний, 2002. – 448с.		

Действит	ельно для учебного	года/		
Зав. кафе,	дрой	Б.И. Селезнев		
СОГЛАСОВАНО				
НБ НовГУ:	ДОЛЖНОСТЬ	I	подпись	расшифровка