Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Новгородский государственный университет имени Ярослава Мудрого» Институт электронных информационных систем

Кафедра проектирования и технологии радиоаппаратуры

АНАЛИЗ НАДЕЖНОСТИ РАДИОЭЛЕКТРОННОГО УСТРОЙСТВА

Лабораторная работа по курсу "Основы надежности электронных средств"

для направления 211000.62 "Конструирование и технология электронных средств"

Руководство

96.6.049.75(076.5) Анализ надежности радиоэлектронного устройства лаб.раб./Сост. О.Н. Петрова. – 3-е изд., перераб. и доп. - – В. Новгород, 2015- 26с.

Лабораторная работа позволяет изучить основные сведения о теории надежности и получить навык исследования и расчета надежности изделия. Руководство содержит задание на работу, методику и порядок ее проведения, содержание отчета и контрольные вопросы.

Библиогр. — 10 назв., ил.
Одобрено к изданию на заседании кафедры ПТРА
Протокол N от 2015г.
Зав. кафедрой ПТРА М.И. Бичурин
@ Новгородский Государственный Университет, 2015

Новгородский государственный университет имени Ярослава Мудрого, 2015.

Компьютерный набор и верстка Петрова О.Н., Курбатова Е.М.

Содержание

1	Цель работы	4
2	Основные положения	4
2	Методические указания по выполнению работы	15
	Контрольные вопросы	
	исок литературы	
Прі	иложение А	25
-	омативные документы	
-	иложение Б	
-	ответствие коэффициентов К1, К2, К3, К4 внешним условиям эксплуатации	

1 Цель работы

Целью работы является закрепление студентами теоретических знаний и получение практических навыков в области методов расчёта надёжности.

2 Основные положения

2.1 Термины и определения

Надежность изделия — свойство, обеспечивающее возможность выполнения им заданных функций в определенных условиях эксплуатации и в течение требуемого интервала времени.

Надежность - собирательный термин, используемый для описания характеристики готовности и влияющих на нее факторов: безотказности, ремонтопригодности и обеспеченности технического обслуживания и ремонта. Надежность используется только для общих описаний, когда не применяются количественные термины и является одним из зависящих от времени аспектов качества.

Следует выделить следующие особенности понятия «надежность»:

- а) проявляется во времени (нет времени нет проблемы надежности);
- б) это внутреннее свойство объекта, заложенное в него при проектировании и изготовлении («детские» стадии жизненного цикла) и проявляющиеся во время эксплуатации и утилизации («взрослые» стадии жизненного цикла);
- в) режим и условия эксплуатации меняют и характеристики надежности, поэтому для оценки надежности изделия необходимо уточнить условия его эксплуатации и режима применения;
- г) надежность комплексное понятие, которое нельзя свести ни к одной характеристике.
- **Готовность** состояние работоспособности изделия в произвольно выбранный момент времени.
- **Работоспособность** состояние изделия выполнять заданные функции с заданными показателями назначения (характеристиками), которые соответствуют требованиям нормативно-технической и/или проектной документации.
- **Восстанавливаемость** свойство изделия восстанавливать работоспособность после устранения отказа.
- **Безотказность** свойство изделия непрерывно сохранять работоспособное состояние в течение некоторого времени или наработки.
- **Наработка** продолжительность или объем работы объекта. Наработку, в течение которой объект, снимаемый с эксплуатации после первого же отказа сохраняет работоспособность, называют *наработкой до первого отказа*. Если она совпадает с календарным временем, тогда её называют временем до первого отказа или временем безотказной работы. Для восстанавливаемых

объектов наряду с наработкой до первого отказа может рассматриваться наработкой между соседними отказами.

• Отказ — нарушение работоспособности изделия.

Отказы могут быть:

- 1) по скорости изменения параметров до возникновения отказа:
- внезапные характеризующиеся скачкообразным изменением значений одного или нескольких параметров изделия, например, короткое замыкание, механическое разрушение;
- постепенные возникающий в результате постепенного изменения значений одного или нескольких параметров изделия, например, со временем номиналы показателей изделий электронной техники (ИЭТ), изменяясь, выходят за предельные отклонения (старение, разряд батарейки);
- 2) по характеру устранения отказов:
- устойчивые всегда требуют проведения мероприятий по восстановлению работоспособности изделия;
- самоустраняющиеся (сбой) устраняются в результате естественного возвращения изделия в работоспособное состояние без участия или при незначительном вмешательстве оператора почти мгновенно;
- перемежающиеся многократно возникающие самоустраняющиеся отказы одного и того же характера;
- неустранимые.
- 3) по характеру проявления отказы различают:
- явные обнаруживаются визуально или штатными методами и средствами контроля и диагностирования при подготовке или в процессе эксплуатации;
- скрытые выявляются при проведении технического обслуживания или специальными мерами диагностирования
- 4) по уровню работоспособности объекта:
- полные полная потеря работоспособности;
- частичные переход на уровень частичной работоспособности (в многофункциональной системе полный отказ части или одной функции может означать отказ для всего изделия);
- 5) по причине возникновения в зависимости от этапа жизненного цикла изделия:
- конструктивные;
- производственные;
- эксплуатационные.

Для всех ремонтируемых изделий отказ не ведет к потере изделием свойства надежности.

- Сохраняемость свойство изделия непрерывно сохранять исправное и работоспособное состояние изделия во времени после хранения и(или) после транспортирования.
- **Ремонтопригодность** свойство объекта, заключающееся в приспособленности к поддержанию и восстановлению работоспособного состояния путем технического обслуживания и ремонта.
- Долговечность сохранение работоспособности изделия до наступления предельного состояния при установленной системе технического обслуживания и ремонта.

Предельное состояние — состояние объекта, при котором его дальнейшая эксплуатация недопустима или нецелесообразна либо восстановление его работоспособного состояния невозможно или нецелесообразно.

2.2 Основные математические модели, критерии и показатели надежности

Сложность физических процессов, приводящих к отказу, и невозможность учета всех начальных условий его появления заставляют рассматривать отказ как событие случайное, появляющееся поодиночке и без последействия (появление последующего события не связано с предыдущим). Для описания таких случайных обстоятельств используется простейший пуассоновский поток событий, хотя есть и другие: Пальма, Эрланга, полумарковский и др.

В качестве модели для описания распределения времени безотказной работы используются распределения: экспоненциальное, нормальное, Вейбулла, логарифмически-нормальное, гамма, Эрланга и др.

Надежность изделий анализируется:

- априорно-теоретическим расчетом в процессе проектирования изделия;
- апостериорно по итогам испытаний опытного образца изделия.

Для количественной оценки, для расчета надежности, кроме изложенных в п. 2.1 качественных характеристик, применяются количественные показатели:

- вероятность безотказной работы;
- интенсивность работы;
- наработка на отказ.

Вероятность безотказной работы — вероятность того, что в заданном интервале времени в пределах заданной наработки не возникнет отказ изделия.

Следовательно, это вероятность того, что случайное время безотказной работы изделия будет больше заданного

$$P(t) = P(t > t_{3a\pi}) \tag{1}$$

U, напротив, вероятность отказа Q(t) — это вероятность того, что в заданном интервале времени и при заданных условиях эксплуатации случится хотя бы один отказ изделия

$$Q(t) = P(t \le t_{3a\pi}) = 1 - P(t)$$
 (2)

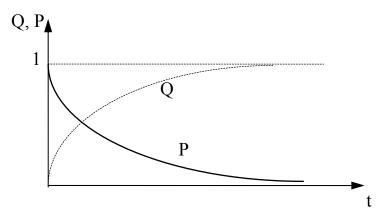
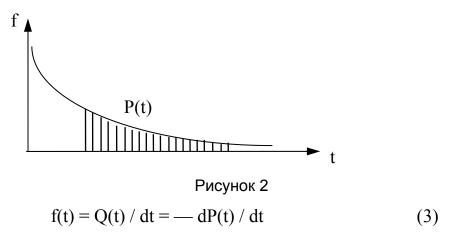



Рисунок 1

Функция Q(t) - интегральная функция распределения времени исправной работы t (рисунок 1), и, если эта функция дифференцируема, то безотказность изделия характеризуется плотностью вероятности времени исправной работы (момента первого отказа), (рисунок 2)

Отсюда следует, что вероятность отказа

$$Q(t) = 1 - \int_{0}^{t} f(t)dt$$
 (4)

Тогда вероятность безотказной работы на интервале (0,t) равна интегралу от момента времени t до ∞

$$P(t) = 1 - \int_{0}^{t} f(t)dt = \int_{t}^{\infty} f(t)dt$$
 (5)

По результатам испытаний статистическое значение P'(t) подсчитывается по формуле

$$P'(t) = N_{pab}(t) / N_0,$$
 (6)

где: N_0 - число изделий в начале испытаний; $N_{\text{pa6}}(t)$ - число изделий, исправно проработавших в интервале (0,t).

Частота от казов $\alpha(t)$ — плотность распределения времени безотказной работы (наработки) изделия до первого отказа.

По итогам испытаний $\alpha(t)$ определяется по формуле

$$\alpha(t) = n(t, \Delta t) / \Delta t \cdot N_0 [1/4], \qquad (7)$$

где: Δt - интервал времени возле момента времени t, на котором определяется частота отказов;

 $n(t,\Delta t)$ - число отказавших изделий на интервале $(t-\Delta t/2, t+\Delta t/2)$.

Приведем (7) к вероятностной форме

$$n(\Delta t) = N(t) - N(t + \Delta t) = N_0 P(t) - N_0 P(t + \Delta t) = N_0 [P(t) - P(t + \Delta t)], \quad (8)$$

где N(t) и p(t) - число исправных изделий и вероятность их безотказной работы к моменту времени t в начале интервала Δt ; $N(t+\Delta t)$ и $P(t+\Delta t)$ - число исправных изделий и вероятность их безотказной работы к концу интервала Δt .

Подставляя (8) в (7) получим

$$\alpha(t) = N_0[P(t) - P(t+\Delta t)] / \Delta t \cdot N_0.$$

При $\Delta t \rightarrow 0$

$$\alpha(t) = \lim \left[P(t) - P(t + \Delta t) \right] / \Delta t = - dP(t) / dt = f(t).$$

$$\Delta t \rightarrow 0$$
(9)

Выражение (9) подтверждает определение частоты отказов как плотности вероятности времени безотказной работы. Типичная для изделий зависимость $\alpha(t)$ приведена на рисунке 3.

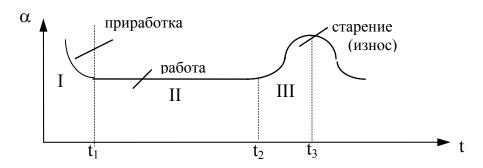


Рисунок 3 - Зависимость частоты отказов от времени

Отказы на участках:

I — из-за дефектов производства (ослабленные элементы, дефекты сборки и монтажа и др.);

II — носят внезапный характер, по времени они намного больше I и III вместе взятых;

III — из-за старения (износа), т.е. выработки ресурса.

Уменьшение частоты отказов после t_3 (рисунок 3) объясняется тем, что осталось мало изначально работающих исправно изделий.

И н т е н с и в н о с т ь о т к а з о в $\lambda(t)$ — вероятность отказа неремонтируемого изделия в единицу времени после данного момента времени при условии, что отказ до этого момента времени не возник.

По итогам испытаний изделий их $\lambda(t)$ определяют, как отношение числа отказавших изделий $n(\Delta t)$ в единицу времени к числу изделий, исправно работающих к рассматриваемому моменту времени при условии, что все однотипные изделия испытываются в одинаковых режимах, а отказавшие не заменяются и не ремонтируются.

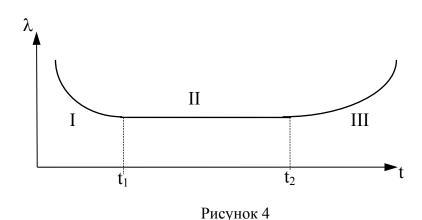
$$\lambda(t) = n(\Delta t) / \Delta t \cdot N_{pa6}(t) [1/4], \qquad (10)$$

Подставляя (8) в (10) и перейдя к пределу, с учетом (6) получим

$$\lambda(t) = \lim_{\Delta t \to 0} \left[P(t) - P(t + \Delta t) \right] / \Delta t \cdot P(t) = -dP(t) / dt \cdot P(t) = f(t)$$
 (11)

Учитывая (9) установим связь между $\lambda(t)$, $\alpha(t)$ и P(t).

$$\lambda(t) = \alpha(t) / P(t). \tag{12}$$


Проинтегрируем (11) в пределах от 0 до t.

$$\int_{0}^{t} \lambda(t)dt = -\int_{0}^{t} dP(t) / P(t) = -\ln P(t)$$

и получим формулу для определения вероятности безотказной работы неремонтируемого изделия

$$P(t) = e^{-\int_{0}^{\alpha(t)dt}}$$
 (13)

Интенсивность отказов — наиболее удобный показатель для изделий, так как она позволяет определять все другие показатели. Кроме того, она показывает, какое число изделий из числа работающих к рассматриваемому моменту времени выйдет из строя после этого момента. А это более важно, чем в случае частоты отказов, относящей число отказавших изделий к числу изделий, поставленных на испытание.

Анализ надёжности радиоэлектронного устройства сост. 10.03.2015

Эксплуатация показывает, что типичная зависимость $\lambda(t)$ на рисунке 4 сохраняет свой вид в подавляющем большинстве случаев, а изменяется только соотношение длин участков I, II, III.

Характерно. что на участке II, когда приработка уже закончена, а старение еще не наступило, интенсивность отказов постоянна. а формула (13) упрощается

$$P(t) = e^{-\lambda t} , \qquad (14)$$

и имеет место экспоненциальный закон надежности.

С редняя наработка до первого отказа (T_{cp}) — среднее значение наработки изделия в партии до первого отказа.

Определяем Т_{ср} по итогам испытаний по формуле среднего

$$T_{cp} = (1/N_0) \sum_{i=1}^{N_0} t_i$$
, $i=1$

где t_i - время безотказной работы i-го изделия.

Т_{ср} является математическим ожиданием времени исправной работы, поэтому

$$T_{cp} = M[t] = \int tf(t)dt = \int t\alpha(t)dt$$

$$-\infty \qquad 0$$
(15)

Подставляя (15) в (11), получим

$$T_{cp} = \int P(t)dt.$$
 (16)

Следовательно, средняя наработка до отказа численно равна площади, ограниченной кривой p(t) и осями координат (см. рисунок 1).

Подставляя (13) в (16), получим

$$T_{cp} = \int -\int \lambda(t) dt,$$

$$0 \quad 0$$

а при λ=const (участок II на рисунке 4)

$$T_{cp} = \int e^{-\lambda t} dt = 1 / \lambda [\Psi]$$

$$(17)$$

Тогда можно записать

$$P(t) = e^{-\lambda t} = e^{-t/T}_{cp}$$
 (18)

Параметр потока отказов, или **с р е д н я я ч а с т о т а о т к а з о в \omega(t) -** среднее число отказов ремонтируемого изделия в единицу времени, взятое для рассматриваемого момента времени.

По итогам испытаний статистическое определение средней частоты отказов:

$$\omega'(t) = n(\Delta t) / \Delta t N_0 [1/4]$$

Эта формула идентична (7) для частоты отказов. Однако результаты получаются другими, поскольку в течение всего времени испытания действительно работают N_0 изделий, так как отказавшие изделия или ремонтируются, или заменяются новыми, и в отказавшие $n(\Delta t)$ изделия могут входить как работающие с начала испытаний, так и заменившие отказавшие или отремонтированные изделия.

Наработка на отказ Т - среднее значение наработки ремонтируемого изделия между отказами.

$$T = (1/n) \sum_{i=1}^{n} t_i,$$

где t_i - время исправной работы между (i-1) и i-м отказами изделия; n - число отказов за время испытаний.

На основном участке работы II (см. рисунок 4) имеют место простейший поток отказов и экспоненциальный закон надежности, и поэтому справедливы соотношения:

$$\omega(t) = \lambda(t) = \omega = \lambda = \text{const},$$

$$\infty$$

$$T_{cp} = T = \int p(t)dt = 1/\lambda [\Psi],$$

$$0$$
(19)

т.е. для характеристики работы ремонтируемых изделий можно использовать интенсивность отказов λ .

Определяются интенсивности отказов ИЭТ с учетом условий эксплуатации изделия

$$\lambda_i = \lambda_{0i} \cdot K_1 \cdot K_2 \cdot K_3 \cdot K_4 \cdot a_i(T, K_H),$$

где λ_{0i} – номинальная интенсивность отказов (см. таблицу 1), поправочные коэффициенты:

- К₁, К₂, в зависимости от воздействия механических факторов,
- К₃, в зависимости от воздействия влажности,
- К₄, в зависимости от давления воздуха,
- $a_i(T^0, K_H)$, в зависимости от температуры поверхности элемента T^0 (значение T^0 выбирается студентом) и коэффициентов нагрузки K_H .

Значения поправочных коэффициентов $K_1,..., K_4$ приведены в таблице 2. Коэффициенты электрической нагрузки $K_{\rm H}$ определяются по формулам, приведенным в таблице 3, в зависимости от типа ИЭТ.

Графики для определения поправочных коэффициентов (T^0 , K_H) для различных типов и видов ИЭТ приведены на рисунках 1,...,5. Результаты удобно представлять в виде таблицы.

2.3 Структурные схемы надежности

Расчет надежности любого изделия предваряется построением модели расчета — структурной схемы, на которой изображается соединение элементов расчета надежности.

Элемент расчета надежности — часть системы, имеющая количественную характеристику, самостоятельно учитываемую при расчете надежности изделия.

Элементами расчета надежности в зависимости от уровня анализа могут быть ИЭТ, модули, функциональные узлы, блоки и т.п.

В теории надежности рассматриваются два способа соединения элементов в изделии с позиции влияния отказов элементов на отказ системы: основное и резервное.

Основное соединение элементов — такое, при коем отказ соединения наступает после отказа одного и любого элемента (рисунок 5).

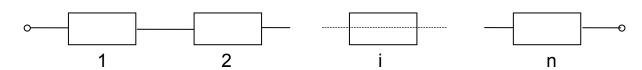


Рисунок 5 — Основное соединение элементов расчета надежности

Надежность (безотказная работа) такой технической системы (TC) описывается, как

$$A = \prod_{i=1}^{n} A_i,$$

где A, A_i - работоспособности TC и i-го элемента соответственно, I - символ пересечения событий (логическое "и").

Основное соединение элементов часто называют последовательным. Однако не следует его путать или жестко связывать с электрическим последовательным соединением элементов, так как при основном соединении

элементов электрически они могут соединяться и последовательно, и параллельно.

Резервное соединение — такое, при котором изделие отказывает только после отказа всех его элементов (рисунок 6).

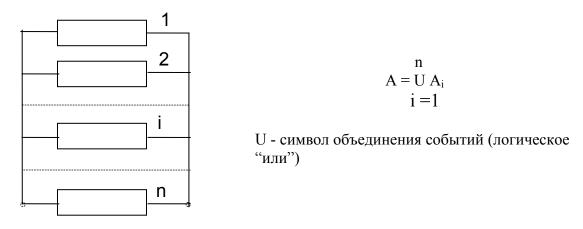


Рисунок 6 — Резервное соединение элементов расчета надежности

Резервное соединение иногда называют параллельным, но его также не следует жестко связывать с электрическими соединениями элементов.

2.4 Методы повышения надежности

- 2.4.1 Своевременное и эффективное решение проблем, связанных с надёжностью изделия решается системой управления надёжностью (СУН). СУН является частью общей системы управления предприятием и частью системы качества (ГОСТ Р 27.001-2009). Методы повышения надежности РЭС можно сгруппировать по этапам жизненного цикла изделия. Ниже приведены наиболее типичные методы, пути повышения надежности, упорядоченные по типам жизненного цикла изделия, кроме утилизации:
 - при проектировании;
 - при технологической подготовке производства;
 - - при изготовлении;
 - при эксплуатации.

Кроме того

2.4.2 Повышение надежности при проектировании

- 1) Схемные решения:
- использование в схемах высококачественных надежных ИЭТ;
- повышение уровня интеграции за счет использования микросхем, БИС;
- упрощение схем;
- разработка схем, допускающих широкие допуски номиналов ИЭТ;
- разработка схем с ограниченными последствиями их отказов;

- отработка схем методами граничных, матричных и статистических испытаний;
- использование устройств на основе нетрадиционных физических эффектов (опто-, акусто-, квантоэлектроники).
 - 2) Системные решения:
- выбор и воплощение структурной схемы надежности изделия с равномерными (одинаковыми) показателями надежности ее элементов;
- резервирование элементов с наихудшей надежностью (принцип Богданова A.A.);
- использование линий связи на основе нетрадиционных физических эффектов;
 - снижение уровня внутренних помех структурными решениями.
 - 3) Конструкторские решения:
- обеспечение наименьшего перегрева (если есть другое КР, уменьшающее еще более перегрев при сохранении других сторон качества изделия принимать его);
- электрическое соединение (контакт) должно иметь только одно функциональное назначение электрический контакт с минимальным и постоянным омическим сопротивлением; не должно быть никаких других функций, особенно функции обеспечения механической прочности;
- защита электрических контактов от внешних механических (вибрации, удары), климатических, агрессивных и других воздействий;
- надежное обеспечение минимальной величины электрического сопротивления контактов экранов с корпусом изделия;
- обеспечение в пределах нормы суммарного электрического сопротивления всех механических соединений скелета изделия при всех предусмотренных ТУ на изделие длительных внешних воздействиях;
 - наилучший выбор материалов, особенно с позиции старения.
 - 2.4.3 Технологическая подготовка производства и изготовление изделий
 - высокая квалификация работников;
 - высокий уровень технологической дисциплины;
- уменьшение сборочно-регулировочных работ за счет ужесточения допусков на размеры деталей и мелких сборок;
- выявление малонадежных изделий на самых низших уровнях сборки посредством механических, климатических и других видов испытаний;
 - входной контроль попутных изделий;
 - тренировка элементов и систем;
 - использование прогрессивных технологических процессов;
- автоматизация производства (при условии экономической целесообразности);
 - статистическое регулирование качества изделий.

2.4.4 Эксплуатация изделий

- высокая квалификация ремонтных мастеров;
- организация обслуживания и ремонта изделий;
- организация обучения ремонтных мастеров;
- регулярность профилактического осмотра и предупредительного ремонта изделий;
- строгий учет, анализ и обобщение случаев отказов изделий с оповещением изготовителя (разработчика);
 - хорошие деловые отношения с изготовителем (разработчиком).

2 Методические указания по выполнению работы

Номер варианта работы определяется преподавателем. Произвольный выбор варианта не разрешается. Расчетные формулы должны быть приведены в общем виде с указанием входящих в них величин и их размерности. После необходимых преобразований в конечные формулы подставляются числовые значения и выполняются вычисления.

При решении задачи следует придерживаться принятой в литературе терминологии и обозначений физических величин, а также Международной системы единиц (СИ).

В конце работы должна быть ссылка на используемую литературу.

Условие задачи: радиоэлектронное устройство (прибор) с последовательной логической схемой надежности состоит из ИЭТ, типы которых приведены в таблице 3.

Порядок решения

1) Определяются интенсивности отказов ИЭТ с учетом условий эксплуатации изделия

$$\lambda_i = \lambda_{0i} \cdot K_1 \cdot K_2 \cdot K_3 \cdot K_4 \cdot a_i(T^0, K_H),$$

где λ_{0i} – номинальная интенсивность отказов (см. таблицу 3), поправочные коэффициенты:

- K_1 , K_2 , в зависимости от воздействия механических факторов,
- К₃, в зависимости от воздействия влажности,
- K_4 , в зависимости от давления воздуха,
- $a_i(T^0,K_{\scriptscriptstyle H})$, в зависимости от температуры поверхности элемента T^0 (значение T^0 выбирается студентом из заданных условий эксплуатации с учётом перегрева внутри устройства, либо значения температур задаётся преподавателем) и коэффициентов нагрузки $K_{\scriptscriptstyle H}$.

Значения поправочных коэффициентов $K_1,...,K_4$ приведены в таблице 4. <u>В приложении Б</u> дано соответствие коэффициентов K1,K2,K3,K4 внешним условиям эксплуатации (по заданию преподавателя формулируется «легенда» для условий эксплуатации изделия).

Коэффициенты электрической нагрузки $K_{\rm H}$ определяются по формулам, приведенным в таблице 5, в зависимости от типа ИЭТ.

Графики для определения поправочных коэффициентов (T^0 , K_H) для различных типов и видов ИЭТ приведены на рисунках 1,...,5. Результаты удобно представлять в виде таблиц (см. таблицы 1,2).

2) Рассчитывается интенсивность отказов изделия

$$\Lambda = \sum_{i=1}^{n} m_i \lambda_i$$

где m_i – число ИЭТ с интенсивностью отказов λ_i ;

n – число видов ИЭТ.

- 3) Рассчитывается среднее время наработки до отказа изделия $T==1/\Lambda$.
- 4) Рассчитывается вероятность безотказной работы в течение заданной наработки $(0,t_D)$ и в течение суток

$$P(t_p) = \exp(-\sum_{i=1}^{n} m_i \lambda_i t_p)$$

- 5) Строятся графики зависимости вероятность безотказной работы от времени.
- 6) По заданию преподавателя возможна модернизация исследуемого прибора с изменением условий эксплуатации в соответствии. В этом случае повторяются пункты 1-5 данного задания.
- 7) Анализируются результаты расчётов.
- 8) Предлагаются проектные и организационные решения, позволяющие повысить надёжность.

Таблица 1 — Результаты расчётов . Интенсивности отказов i-го элемента в рабочем режиме

Наименование элемента
Тип элемента
Интенсивность отказов в нормальном режиме λ_{0i} , 10^{-6} $1/4$ ас
Коэффициент нагрузки К _н
Температура Т, ⁰ С
Поправочный коэффициент $a_i(T^0,K_{\scriptscriptstyle H})$
Интенсивность отказов і-го элемента с учётом внешних условий λ _{0i} • K ₁ • K ₂ • K ₃ • K ₄ , 10 ⁻⁶ 1/час
Интенсивность отказов i-го элемента в рабочем режиме $\lambda_i = \lambda_{0i} \cdot K_1 \cdot K_2 \cdot K_3 \cdot K_4 \cdot a_i(T, K_H),$
Λ _i ,10 1/4αc

Таблица 2 — Результаты расчётов . Интенсивности отказов групп элементов в рабочем режиме

Наименование элементов (ИЭТ, функциональных узлов, групп)	Количество элементов т _і	λ_i , 10^{-6} 1/час	mλ _i , 10 ⁻⁶ 1/час
1.			
2.			
n.			
Интенсивность отказов всего изделия (с	рункцио <mark>нально</mark>	го узла) 🛚 Л	n
1			$\Lambda = \sum m_i \lambda_i$
			1

Таблица 3 - Интенсивности отказов и количество ИЭТ в устройстве

Таблица 3 - Инт		юсти (отказс	вик	ОЛИЧ	еств	о ИЭ	I в ус													
Наименование ИЭТ	λ ₀ , 10 ⁻⁶ [1/час]]	Количест	гво ИЭТ	для вар	иантов								
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Микросхемы со средней степенью интеграции	10,013	4	2							2			2				2				
Большие интегральные схемы	10,01				2								2	2							
Транзисторы германиевые																					<u> </u>
до 2мВт	0,4	10	12	20				8													
до 20 мВт	0,7			4	2									2							1
до 200 мВт	0,6																		6		1
свыше 200 мВт	1,91			2				2													1
Транзисторы кремниевые до 150 мВт	0,84						18					10			16		4	6		8	9
до 1 Вт	0,5					4			8			-						4			6
до 4 Вт	1,74					-			4		1	2									
Диоды германиевые	0,157		2		4			4	-					6					8		
Диоды кремниевые	0,2					6	4		6	4	8				2	8	8	4	_	2	8
Конденсаторы бумажные	0,05						2	4	8	4	3		6	2	1	4	3	8	5		8
Конденсаторы керамич.	0,15	8		4	5		8	6				7	10	4	3			1		10	
Конденсаторы слюдяные	0,075		10				10	12				6		2	1					3	
Конденсаторы стеклянные	0,06											4			2				6	3	1
Конденсаторы электролит.	0,035		2	2	2		2	4	6		6	4	4		4	8	2	3	2		4
Конденсаторы воздушные	0,034	1			1			2						2	1				1	4	
Резисторы композ.	0,043											1		2	6			8	2	12	1
Резисторы пленочные	0,03		48		8	4	8					6	12		2						
Резисторы проволочные	0,087								2	2	3					6					
Резисторы угольные	0,045	42		28	1	2	30	18	20	2	2	16		4	10		15	24	16	24	18
Трансформаторы:входные	1,09							1										1			1
выходные звук. ч.	0,02			1			2	1							1			1			
высокочастотные	0,045					1	3					4					2			2	
силовые	0,025					1					1					1		1			
Автотрансформаторы	0,06								1							1					1
Дроссели	0,34					1			2	1	1					2					1
Катушки индуктивности	0,02	2	1					4				6					8		3		
Обмотки электродв.	0,08			1										2							
Реле (xк ^x)	0,25									2×2	1×6								2×4		

Наименование ИЭТ	λ ₀ , 10 ⁻⁶ [1/час]								ŀ	Количест	тво ИЭТ	для вар	иантов	}							20
паименование и э г	[1/4ac]	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Соединители (хк ^х)	0,062	1×10	1×14	1×4			1×8	1×16	2×4	1×4	1×8	1×12		1×8	1×16	2×4	1×10	2×2			
Переключ. Кнопочн. (хк ^х)	0,07		1×6		1×2	3×4		2×8			1×2							1×6	1×8		
Гнезда	0,01		8	2	1							8	6		4	4	8	2			
Клеммы, зажимы	0,0006						4		2		4			4	4				2		
Провода соединит.	0,015	4	12	2	8		8	40	6	12	50	20	4					14	10		2
Кабели	0,475					4						2	1				2		3	2	
Аккумуляторы	7,2				1				2								4		2		
Батареи заряжаемые	1,4											1								4	
Электродвигатели:																					,
асинхронные	8,6									2											
синхронные	0,359							4													ı
вентиляторные	2,25								1		1				1	1	1				
Антенны	0,36				1															1	
Волноводы гибкие	2,6					2											1				
Предохранители	0,5					2	2	2	2		2					4		2	2		2
Выводы высокочастотные	2,63	2	1		1	4											2			1	
Плата печатная	0,7	1	1	1	1	1	3	1	2	1	1	1	1	2	2		1	1		1	1
Пайка печатного монтажа	0,01	192	108	102	70	60	182	48	158	48	30	82	120	64	134		118	124		98	112
Пайка навесного монтажа	0,03	10	12	8		14	20	28	26				34		24	80	42	36	134	16	18
Громкоговорители	4			1														1			

Таблица 4 - Поправочные коэффициенты к₁, к₂, к₃, к₄.

Поправочные коэффициенты					<i>, 2)</i> .					Вариа	анты									
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Влияние механических																				
воздействий: вибрации κ_1	1,0	1,04	1,3	1,35	1,4	1,46	1,0	1,04	1,3	1,35	1,4	1,46	1,04	1,3	1,35	1,4	1,46	1,3	1,35	1,4
удары к2	1,0	1,03	1,05	1,08	1,1	1,13	1,0	1,03	1,05	1,08	1,1	1,13	1,03	1,05	1,08	1,1	1,13	1,05	1,08	1,1
Влияния влажности к ₃	1,0	2,0	2,5	2,5	2,0	1,0	1,0	2,0	2,5	2,5	2,0	1,0	1,0	2,0	2,5	2,5	2,0	1,0	1,0	2,0
Влияния атмосферного																				
давления к ₄	1,4	1,36	1,35	1,3	1,25	1,45	1,2	1,16	1,14	1,1	1,0	1,45	1,4	1,36	1,35	1,3	1,45	1,2	1,0	1,0

Таблица 5 - Коэффициенты нагрузки ИЭТ

Наименование ИЭТ	Контролируемые	Коэффициент	Рекомендуем	иые значения
	параметры	нагрузки к _н	=	киме
	1 1	1,7	импульсны	статический
			й	
Микросхемы (МС)	Макс. вых. ток,	n		
	$I_{\scriptscriptstyle Bbix.max}$	$\sum I_{\mathrm{BX.i}}$		
	Вход. Ток МС,	i=1		
	включенных на			
	выходе, $I_{\text{вх.}i}$	$I_{\scriptscriptstyle B ext{b} ext{I} ext{X}. ext{M} ext{a} ext{X}}$		
	Число			
	нагруженных			
	входов, п			
Транзисторы	Мощность,	P_k / $P_{k \text{доп}}$	0,5	0,2
	рассеиваемая на			
	коллекторе, P_k			
Полупроводниковые	Обратное	U_{0}/U_{0} доп	0,7	0,5
диоды	напряжение, U_0			
Конденсаторы	Напряжение на	U/U доп	0,7	0,5
	обкладках, U			
Резисторы	Рассеиваемая	P/P доп	0,6	0,5
	мощность, Р			
Трансформаторы	Ток нагрузки, Ін	$I_{\scriptscriptstyle H}/\ I_{\scriptscriptstyle H}$ доп	0,9	0,7
Электрические	Ток, I_k		0,8	0,5

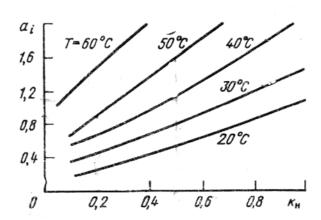


Рисунок - 1 Зависимость $a_i(T, K_{\scriptscriptstyle H})$ для транзисторов

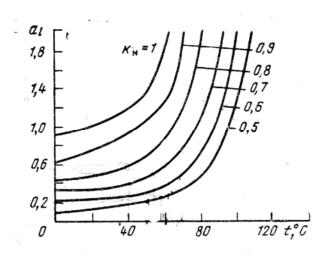


Рисунок - 2 Зависимость a_i(T,K_н) для конденсаторов

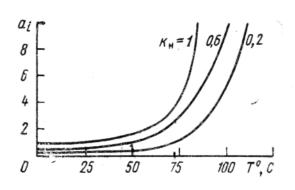


Рисунок - 3 Зависимость $a_i(T,K_{\mbox{\tiny H}})$ для полупроводниковых приборов

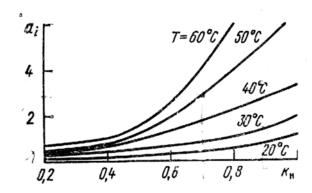


Рисунок - 4 Зависимость $a_i(T, K_{\scriptscriptstyle \rm H})$ для трансформаторов

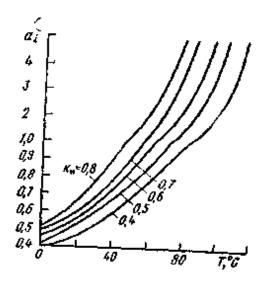


Рисунок - 5 Зависимость $a_i(T, K_{\scriptscriptstyle H})$ для резисторов

4 Контрольные вопросы

- 1. Сформулировать и обосновать понятие «надёжность».
- 2. Основные этапы развития и формирования теории надёжности.
- 3. Система управления надёжностью (СУН), план надёжности.
- 4. Этапы СУН.
- 5. Проектирование и разработка продукции в системе управления надёжностью.
- 6. Привести и обосновать классификацию источников возникновения дестабилизирующих факторов (ДФ), влияющих на надёжность аппаратно-программного комплекса (АПК).
- 7. Учёт влияния ДФ на надёжность АПК.
- 8. Коэффициентный метод расчёта надёжности изделия.
- 9. Модели надёжности изделия при проектировании. Допущения и логические схемы надёжности.
- 10. Отказы в теории надёжности и их классификация.
- 11.Интенсивность отказов (вероятностное и статистическое определения). Зависимость интенсивности отказов от времени.
- 12. Работоспособность, безотказность, готовность.
- 13. Восстанавливаемость и ремонтопригодность.
- 14. Сохраняемость, долговечность, предельное состояние, ресурс.
- 15. Основное отличие критериев и показателей надёжности восстанавливаемых и невосстанавливаемых изделий.
- 16. Наработка до отказа, наработка на отказ, средняя наработка.
- 17. Вероятность безотказной работы (вероятностное и статистическое определения).
- 18. Частота отказов, средняя частота отказов (вероятностное и статистическое определения).
- 19. Экспоненциальный закон надёжности. Основные особенности.
- 20. Эффективные методы по повышению надёжности на всех этапах жизненного цикла изделия (ЖЦИ).

Список литературы

- 1. Дорохов А.Н. Обеспечение надёжности сложных технических систем: Учебник/ Дорохов А.Н., Керножицкий В.А., Миронов А.Н., Шестопалов О.Л. СПб.: Издательство «Лань», 2011. 352с.: ил. (Учебник для вузов. Специальная литература).
- 2. Каштанов В.А., Медведев А.И. Теория надёжности сложных систем (теория и практика). М.: «Европейский центр по качеству», 2002. 470с.
- 3. Половко А.М. Основы теории надежности:Практикум Учеб.пособие для вузов/ А.М. Половко, С.В. Гуров. СПб.:БХВ-Петербург,2006. 557,[1]с.:ил. Библиогр.: c.558. ISBN 5-94157-542-4(в пер.).
- 4. Половко А.М. Основы теории надежности: Учеб. пособие для вузов/ А.М. Половко, С.В. Гуров. 2-е изд., пере- раб.и доп. СПб.:БХВ- Петербург, 2006. 702с.: ил. Библиогр.: с. 689-698. Указ.: с. 699-702. ISBN 5-94157-541-6(в пер.).
- 5. Теория надёжности: Учебник для вузов/ : В.А. Острейковский.-М.: «Высшая школа», 2003
- 6. Хазанович Г.Предотвращение отказов технических систем. Стандарты и качество №2, 2007г
- 7. Чеканов А.Н. Расчёты и обеспечение надёжности электронной аппарыпуры: учебное пособие/ А.Н.Чеканов. М.: КНОРУС, 2012. 440с.
- 8. Черкесов Г.Н. Надёжность аппаратно-программных комплексов. Учебное пособие. СПб.: Питер, 2005. 479 с.: ил.
- 9. Ямпурин Н.П. Основы надёжности электронных средств: учеб. пособие для студ. высш. учеб. заведений/Ямпурин, А.В.Баранова; под ред. Н.П. Ямпурина. М.; Издательский центр «Академия», 2010. 240с.

Приложение А

(справочное)

Нормативные документы

- 1. ГОСТ Р ИСО 9000 2008 Системы менеджмента качества. Основные положения и словарь.- М.: 2009.
- 2. ГОСТ Р ИСО 9004-2001 Системы менеджмента качества. Рекомендации по улучшению деятельности (ИСО 9004:2000, IDT)
- 3. ГОСТ Р 27.001 2009 Надёжность в технике. Система управления надёжностью. Основные положения.
- 4. ГОСТ Р 27.601 2011 Надёжность в технике. Управление надёжностью. Техническое обслуживание и его обеспечение.
- 5. ГОСТ Р 52003-2003 Уровни разукрупнения радиоэлектронных средств. Термины и определения
- 6. ГОСТ 27.002-89. Надёжность в технике. Термины и определения.
- 7. ГОСТ 15150 69. Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды.
- 8. ГОСТ 17516.1-90. Изделия электротехнические. Общие требования в части стойкости к механическим внешним воздействующим факторам.
- 9. МЭК 721-3. Классификация внешних условий. Часть 3. Классификация групп внешних параметров и жёсткостей.
- 10.CTO 1.701-2010. Текстовые документы. Общие требования к построению и оформлению.

Приложение Б

(справочное)

Соответствие коэффициентов К1, К2, К3, К4 внешним условиям эксплуатации

Таблица Б1 – Коэффициенты влияния механических воздействий

Условия эксплуатации аппаратуры	Вибрация	Ударные	Суммарные
		нагрузки	воздействия
	\mathbf{K}_{1}	\mathbf{K}_2	K_{Σ}
Лабораторные	1,0	1,0	1,0
Стационарные (полевые)	1,04	1,03	1,07
Корабельные	1,3	1,05	1,37
Автофургонные	1,35	1,08	1,46
Железнодорожные	1,4	1,1	1,54
Самолётные	1,46	1,13	1,65

Таблица Б2 – Коэффициент влияния влажности

Влажность, %	Температура, ⁰ С	Поправочный коэффициент
		\mathbf{K}_3
6070	2040	1,0
9098	2025	2,0
9098	3040	2,5

Таблица Б3 – Коэффициент влияния атмосферного давления

Давление, кПа	Поправочный
	коэффициент
	\mathbf{K}_{4}
0,11,3	1,45
1,32,4	1,40
2,44,4	1,35
4,412,0	1,35
12,024,0	1,30
24,032,0	1,25
32,042,0	1,20
42,050,0	1,16
50,065,0	1,14
65,080,0	1,10
80,0100,0	1,00