М. С. Токмачев

РАЗРАБОТКА РЯДА ПОКАЗАТЕЛЕЙ ОБЩЕСТВЕННОГО ЗДОРОВЬЯ НА ОСНОВЕ ЦЕПЕЙ МАРКОВА

На основе применения цепей Маркова с помощью вероятностных методов разработан ряд показателей, характеризующих общественное здоровье. Указаны методика их расчета и смысл.

Идея и методика применения цепей Маркова для оценки общественного здоровья, [1], воплотились в практическую реализацию на основе статистических данных о состоянии здоровья населения Новгородской области. Первая часть результатов представлена в публикациях [2, 3, 4].

Согласно указанной методике всё население классифицируется по возрастам t_i и состояниям здоровья E_j , при этом E_0 - «относительно здоров» и E_n - «смерть» (состояние E_n обычно подразделяется на несколько состояний согласно смертности по причинам). Каждый индивидуум в наблюдаемый момент времени t находится в определённом возрастном интервале и в одном из состояний здоровья. Использование цепей Маркова позволяет осуществить вероятностный прогноз состояния здоровья, включая смертность, как отдельного человека, так и целых групп населения на последующие периоды. В частности, на вопросах прогнозирования акцентировано внимание в [4].

Вместе с тем наборы безусловных вероятностей, находимых по вышеуказанной методике, данные органов здравоохранения и страховых кампаний о состоянии здоровья, а также половозрастные характеристики населения позволяют ввести ряд самостоятельных показателей,

характеризующих здоровье и смертность населения. Этим вопросам и посвящена данная работа.

Используем понятия, определения и результаты вычислений, представленные в [1-4]. Для каждого наблюдаемого в возрасте t_i , где i - номер соответствующего возрастного интервала, и с состоянием здоровья E_j , где E_j -одно из возможных состояний здоровья, исключая смертность, введём случайную величину X_{ij} . Смысл X_{ij} - количество лет жизни человека, дожившего до возраста t_i и находящегося при этом возрасте в состоянии E_j . Например, $X_{7,4}$ - общее количество лет жизни индивидуума, находящегося на момент исследования в 7-м возрастном интервале (24-27 полных лет) и с состоянием здоровья E_4 (болезни органов дыхания). Всего получается mn случайных величин, где m- количество возрастных интервалов, n- количество состояний E_i без состояния E_n . Запишем их в матричной форме

$$X = \begin{pmatrix} X_{1,0} & X_{1,1} & \dots & X_{1,n-1} \\ X_{2,0} & X_{2,1} & \dots & X_{2,n-1} \\ \dots & \dots & \dots & \dots \\ X_{m,0} & X_{m,1} & \dots & X_{m,n-1} \end{pmatrix}.$$

Для каждой случайной величины X_{ij} закон распределения, обладая своими персональными параметрами, имеет вид

х	x_{i+1}	x_{i+2}	x_{i+3}	 x_{m-1}	\mathcal{X}_m
p	p_{i+1}	$q_{i+1}p_{i+2}$	$q_{i+1}q_{i+2}p_{i+3}$	 $q_{i+1}q_{i+2}q_{m-2}p_{m-1}$	$q_{i+1}q_{i+2}q_{m-1}1$

где $x_{i+1}, x_{i+2}, ..., x_m$ - середины каждого из последующих за i-м интервала p_s - вероятность умереть в возрасте x_s (вычисляется как безусловная вероятность), $q_s = 1 - p_s$. Тот факт, что получено именно распределение вероятностей, проверяется наличием условия нормировки $\sum p = 1$. Запишем выражение подробнее, сгруппировав слагаемые:

$$\sum p = p_{i+1} + q_{i+1}p_{i+2} + q_{i+1}q_{i+2}p_{i+3} + \dots + q_{i+1}q_{i+2}\dots q_{m-2}p_{m+1} + q_{i+1}q_{i+2}\dots q_{m-1}1 =$$

$$p_{i+1} + q_{i+1}(p_{i+2} + q_{i+2}(p_{i+3} + q_{i+3}(p_{i+4} + \dots + q_{m-3}(p_{m-2} + q_{m-2}(p_{m-1} + q_{m-1}1))\dots).$$

Далее, последовательно справа налево применяя равенство $p_s + q_s = 1$, убеждаемся в справедливости условия нормировки.

Для последнего возрастного интервала закон распределения \boldsymbol{X}_{mj} имеет вид

$$\begin{array}{c|cc} x & x_m \\ \hline p & 1 \end{array}$$

Зная закон распределения X_{ij} , легко найти среднее и дисперсию:

$$M(X_{ij}) = \sum xp = M_{ij}, \ D(X_{ij}) = M(X_{ij}^2) - M^2(X_{ij}) = D_{ij}.$$

Найденные для всех случайных величин характеристики удобно записать в матричном виде

$$M = \begin{pmatrix} M_{1,0} & M_{1,1} & \dots & M_{1,n-1} \\ M_{2,0} & M_{2,1} & \dots & M_{2,n-1} \\ \dots & \dots & \dots & \dots \\ M_{m,0} & M_{m,1} & \dots & M_{m,n-1} \end{pmatrix}; \quad D = \begin{pmatrix} D_{1,0} & D_{1,1} & \dots & D_{1,n-1} \\ D_{2,0} & D_{2,1} & \dots & D_{2,n-1} \\ \dots & \dots & \dots & \dots \\ D_{m,0} & D_{m,1} & \dots & D_{m,n-1} \end{pmatrix}.$$

Смысл значения M_{ij} - средняя ожидаемая продолжительность жизни индивидуума, находящегося в настоящее время в i -м возрастном интервале в состоянии здоровья E_j .

 $^{^{1}}$ В последнем интервале, имеющем длину большую, чем другие, значение x_{m} определяется

Таким образом, матрица M, по существу, является матрицей значений средней продолжительности жизни в зависимости от возраста и текущего состояния здоровья. Поскольку найдены выборочные дисперсии D_{ij} , то для каждого параметра Θ_{ij} генеральной совокупности, являющегося «истинным значением» средней продолжительности жизни, можно построить доверительный интервал с надёжностью γ :

$$M_{ij} - t_{\gamma} \frac{\sqrt{D_{ij}}}{\sqrt{n_{ij}}} < \Theta_{ij} < M_{ij} + t_{\gamma} \frac{\sqrt{D_{ij}}}{\sqrt{n_{ij}}},$$

где n_{ij} - количество соответствующих наблюдений, t_{γ} - коэффициент доверия. При больших объёмах статистических данных доверительные интервалы оказываются вполне приемлемыми.

Исследование и сравнение конкретных значений матрицы M представляет несомненный интерес для медицинских работников, занимающихся изучением, как отдельных видов заболеваемости, так и охраной общественного здоровья в целом.

При известной средней продолжительности жизни для каждой группы (t_i, E_j) можно вычислять средние показатели продолжительности жизни, опираясь на реальные данные половозрастной структуры населения. Введём матрицу, характеризующую возрастной состав населения в соответствии с состоянием здоровья:

$$Y = \begin{pmatrix} y_{1,0} & y_{1,1} & \dots & y_{1,n-1} \\ y_{2,0} & y_{2,1} & \dots & y_{2,n-1} \\ \dots & \dots & \dots & \dots \\ y_{m,0} & y_{m,1} & \dots & y_{m,n-1} \end{pmatrix},$$

статистически и не совпадает с серединой интервала.

4

где y_{ij} - количество человек, проживающих на определённой территории (в частности, на территории Новгородской области) в возрасте t_i с состоянием здоровья E_j . Данные рассматриваются отдельно для мужчин и женщин.

Найдём произведения матриц YM^T и Y^TM . На главной диагонали каждой из получившихся матриц находятся значения количества человеко-лет жизни населения, причём в первом случае YM^T , разложенные по возрастным группам, а во втором случае, Y^TM , - по группам состояния здоровья. Сумма элементов главной диагонали — общее количество человеко-лет жизни.

Можно ввести относительные показатели: вместо матрицы Y в указанных произведениях использовать матрицу $C = \frac{1}{N}Y$, где N - общее количество населения (соответствующие элементы матрицы $c_{ij} = \frac{1}{N}y_{ij}$). Тогда сумма элементов главной диагонали матриц CM^T и C^TM - средняя продолжительность жизни всего населения, а сами элементы главной диагонали- составляющие этой суммы по возрастным группам (для CM^T) или по состояниям здоровья (для C^TM).

Более интересным представляется нахождение средней продолжительности жизни населения в зависимости от возраста или состояния здоровья. Для вычисления этих значений используем матрицы A и B, получающиеся на основе матрицы Y. Матрица A получается из матрицы Y путём деления элементов каждой строки на соответствующую сумму элементов этой строки, T. е. сумма элементов по строкам в матрице A равна 1. Аналогично, матрицу B получаем, разделив элементы каждого столбца

матрицы Y на сумму элементов этого столбца, т. е. сумма элементов по столбцам в матрице B равна 1. Рассмотрим произведение матриц AM^T :

На главной диагонали полученного произведения матриц элементы $\overline{M}_{1\bullet}$, $\overline{M}_{2\bullet}$, ..., $\overline{M}_{m\bullet}$ представляют собой средние продолжительности жизни населения соответствующего возраста, усреднённые по состояниям здоровья.

Аналогично, взяв произведение матриц $B^T M$,

$$B^{T}M = \begin{pmatrix} b_{1,0} & b_{2,0} & \dots & b_{m,0} \\ b_{1,1} & b_{2,1} & \dots & b_{m,1} \\ \dots & \dots & \dots & \dots \\ b_{1,n-1} & b_{2,n-1} & \dots & b_{m,n-1} \end{pmatrix} \cdot \begin{pmatrix} M_{1,0} & M_{1,1} & \dots & M_{1,n-1} \\ M_{2,0} & M_{2,1} & \dots & M_{2,n-1} \\ \dots & \dots & \dots & \dots \\ M_{m,0} & M_{m,1} & \dots & M_{m,n-1} \end{pmatrix} = \begin{pmatrix} \overline{M}_{\bullet 0} & \dots & \dots & \dots \\ \dots & \overline{M}_{\bullet 1} & \dots & \dots \\ \dots & \overline{M}_{\bullet n-1} & \dots & \dots \\ \dots & \dots & \dots & \overline{M}_{\bullet n-1} \end{pmatrix},$$

получаем матрицу, на главной диагонали которой располагаются средние продолжительности жизни населения с определённым состоянием здоровья $\overline{M}_{\bullet 0}, \overline{M}_{\bullet 1},...,\overline{M}_{\bullet n-1},$ усреднённые по возрастам, в которых зафиксировано соответствующее заболевание.

Основываясь на значениях средней продолжительности жизни M_{ij} , сформируем относительные показатели. В [2-4] использовано предельное значение возраста, определяемое 115 годами жизни, Исходя из этого, введём

$$\alpha_{ij} = \frac{M_{ij}}{115}$$
 - индекс дожития ($0 \le \alpha_{ij} \le 1$);

$$\beta_{ij} = \frac{115 - M_{ij}}{115}$$
 - индекс недожития ($0 \le \beta_{ij} \le 1$).

Как легко заметить, $\alpha_{ij}+\beta_{ij}=1$. Полученные значения α_{ij} и β_{ij} можно записать в матричном виде: матрицы α и β соответственно. Полагая вместо

 M_{ij} средние \overline{M}_{iullet} и \overline{M}_{ullet}_j , получим индексы дожития и недожития для определённых возрастных категорий и категорий, формируемых по состояниям здоровья.

Учитывая одновременно с M_{ij} возраст t_i , введём следующие показатели:

$$g_{ij} = \frac{M_{ij} - t_i}{115 - t_i}$$
 - коэффициент дожития, определяющий долю лет, оставшихся до значения соответствующей средней продолжительности жизни M_{ij} по отношению к максимальному количеству оставшихся лет жизни (до 115 лет);

$$h_{ij} = \frac{115 - M_{ij}}{115 - t_i}$$
 - коэффициент недожития.

Очевидно, что $0 \le g_{ij} \le 1$, $0 \le h_{ij} \le 1$, $g_{ij} + h_{ij} = 1$.

Коэффициент недожития, изменяющийся от 0 при $M_{ij}=115\,$ до 1 при $M_{ij}=t_i$, по сути, объективно характеризует степень тяжести состояния здоровья. Матрицу коэффициентов недожития

$$H = \begin{pmatrix} h_{1,0} & h_{1,1} & \dots & h_{1,n-1} \\ h_{2,0} & h_{2,1} & \dots & h_{2,n-1} \\ \dots & \dots & \dots & \dots \\ h_{m,0} & h_{m,1} & \dots & h_{m,n-1} \end{pmatrix}$$

можно использовать при вычислении целой группы показателей здоровья, заболеваемости и смертности, введённых в [5] и частично представленных в [6], где коэффициенты тяжести состояния здоровья предполагалось вводить экспертным путём. Объективная характеристика, базирующаяся на достоверных статистических данных, несомненно, является более качественной, нежели экспертная.

Значения разностей $M_{ij}-t_i$ для трудоспособных возрастов позволяют вычислять потери трудового потенциала вследствие смерти. Легко представить и соответствующие относительные показатели, касающиеся трудового потенциала населения.

В заключение отметим, что введённые выше показатели имеют очевидную прикладную направленность и могут быть существенно задействованы при изучении общественного здоровья.

^{1.} Токмачев М. С. // Обозрение прикладной и промышленной математики, 2003, т.10, в.2, с.517-518.

Медик В. А., Токмачев М. С. // Медицинский академический журнал, 2003, т. 3, №2, с. 122-132.

^{3.} Медик В. А., Токмачев М. С., Кирьянов Б. Ф., Бачманов А. А. // Материалы научной сессии Новгородского научного центра Северо-Западного отделения РАМН. М.: Медицина, 2003, т. 2, с.46-50.

Медик В. А., Токмачев М. С., Бачманов А. А., Красовский Ю. А. // Проблемы социальной гигиены, здравоохранения и истории медицины. Национальный НИИ общественного здоровья РАМН. М.: Медицина, 2004, №2, с. 24-27.

^{5.} Токмачев М. С. / Деп. в ВИНИТИ от 18.08.2003. № 1597-В03.

^{6.} Медик В. А., Токмачев М. С. // Материалы научной сессии Новгородского научного центра Северо-Западного отделения РАМН. М.: Медицина, 2003, т. 2, с.51-54.