Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Новгородский государственный университет имени Ярослава Мудрого» Институт электронных и информационных систем

Кафедра физики твердого тела и микроэлектроники

УТВЕРЖДАЮ Директор ИЭИС Одень С.И.Эминов 2017 г.

НАНОЭЛЕКТРОНИКА

Учебный модуль по направлению подготовки 11.03.04 — Электроника и наноэлектроника

Рабочая программа

COLITACO	JRAHO	
Начальни	к учебно	го отдела
Day	О.Б	.Широколобова
« 28 »	03	2017 _r .

Разработал преподаватель кафедры ФТТМ _______ Э.Ю. Козловский «_______ 20/7г.

Принято на заседании кафедры ФТТМ Протокол № 7 от 13.03 20% Заведующий кафедрой

Б.И. Селезнев

1 Цели и задачи учебного модуля

Целью учебного модуля (УМ) является формирование компетентности студентов в области наноэлектроники, способствующей становлению их готовности к решению задач профессиональной деятельности.

Основными задачами УМ являются:

- формирование понимания студентами физических свойств наноразмерных объектов;
- формирование системы знаний, касающихся технологии создания твердотельных наноструктур;
- выработка умения проводить диагностику и анализ наносистем.

Ведущая идея учебного модуля:

 знание законов физики работы и технологий формирования низкоразмерных полупроводниковых структур необходимо для создания современных приборов наноэлектроники.

2 Место учебного модуля в структуре ОП направления подготовки

Учебный модуль «Наноэлектроника» входит в базовую часть блока 1, читается в 8 семестре.

Для изучения УМ используются знания, полученные при изучении следующих учебных модулей: «Материалы электронной техники», «Физика конденсированного состояния», «Процессы микро- и нанотехнологии».

В результате изучения предшествующих модулей и для изучения УМ «Наноэлектроника», обучающиеся должны:

знать: основы зонной теории твердых тел, основные представления об электрофизических свойствах важнейших полупроводниковых материалов, практические возможности и особенности конкретных технологических процессов для изготовления полупроводниковых структур и устройств микро- и наноэлектроники на их основе;

уметь: оценивать параметры исходных полупроводниковых структур и формируемых на их основе приборов исходя из особенностей технологии и внешних воздействующих факторов, выбирать необходимые средства диагностики полупроводниковых структур и технологические процессы для создания устройств микро- и наноэлектроники;

владеть: основными представлениями об основных направлениях развития процессов микро- и нанотехнологий.

Знания и умения, полученные при изучении данного учебного модуля, используются при подготовке выпускной квалификационной работы.

3 Требования к результатам освоения учебного модуля

Процесс изучения УМ направлен на формирование компетенций:

– ПК-2 способность аргументировано выбирать и реализовывать на практике эффективную методику экспериментального исследования параметров и

- характеристик приборов, схем, устройств и установок электроники и наноэлектроники различного функционального назначения;
- ПК-3 готовность анализировать и систематизировать результаты исследований, представлять материалы в виде научных отчетов, публикаций, презентаций.

В результате изучения учебного модуля «Наноэлектроника» студент должен знать, уметь и владеть:

Код компетенции	Уровень освоения компетенции	Знать	Уметь	Владеть
ПК-2	повышенный	методы	исследовать	приемами работы с
		диагностики	нанообъекты	использованием
		наносистем		зондовых
				измерений для
				исследования
				транзисторных
				наногетероструктур
ПК-3	повышенный		анализировать и	приемами работы с
			систематизировать	измерителями
			результаты	характеристик
			исследований	транзисторных
			нанообъектов	наногетероструктур
				и средствами
				обработки и
				визуализации
				полученных
				результатов

4 Структура и содержание учебного модуля

4.1 Трудоемкость учебного модуля

	Распределение по	Коды
Учебная работа (УР)	семестрам	формируемых
	8 семестр	компетенций
Трудоемкость дисциплины в зачетных	6	
единицах (ЗЕ)		
Распределение трудоемкости по видам УР	216	
в академических часах (АЧ):		
- лекции	36	
- практические занятия	54	ПК-2,
- лабораторные работы	-	ПК-2, ПК-3
- в т.ч. аудиторная СРС	18	11K-3
- внеаудиторная СРС	90	
Аттестация:		ПК-2
- экзамен	36	

4.2 Содержание и структура разделов учебного модуля

УЭМ1

- 1 Индустрия наносистем. Основные понятия и направления развития. Классификация нанообъектов. История развития нанонауки и нанотехнологий. Тенденции развития микро- и наноэлектроники. Влияние нанотехнологий на становление нового технологического уклада в мировой экономике.
- 2 Особенности физических взаимодействий на наномасштабах. Роль объема и поверхности в физических свойствах наноразмерных объектов. Физико-химические особенности наноструктурных материалов. Механика, оптика и магнетизм нанообъектов.
- 3 Квантовая механика наносистем. Квантовое ограничение. Квантовые ямы, квантовые нити, квантовые точки. Перенос носителей заряда в низкоразмерных структурах. Баллистический транспорт носителей заряда. Целочисленный и дробный квантовый эффект Холла. Туннельный эффект. Спиновые эффекты. Гигантское магнитосопротивление. Кулоновская блокада. Углеродные наноструктуры: фуллерены и нанотрубки. Графен.
- 4 Технологии создания твердотельных наноструктур. Молекулярно-лучевая эпитаксия. Газофазная эпитаксия из металлоорганических соединений. Методы, использующие сканирующие зонды. Атомная инженерия. Нанолитография. Нанопечать.
- 5 Методы диагностики и анализа наносистем. Основы сканирующей зондовой микроскопии и методы ее применения в современных научных исследованиях. Атомно-силовая микроскопия. Исследование квантово-размерных гетероструктур методами фотоэлектрической спектроскопии и просвечивающей электронной спектроскопии. Спектроскопия адмиттанса. Электрохимическое профилирование. Холловские измерения. Эллипсометрия.

УЭМ2

- 6 Кремниевая наноэлектроника. Субмикронная литография: основные понятия и тенденции. Формирование транзисторов в приповерхностных слоях кремния (FEOL). Транзисторы технологии «Кремний-На-Изоляторе». Моделирование транзисторов КНИ технологий. Формирование межэлементных соединений и межуровневой разводки (BEOL). Перспективы приборных применений графена в электронике.
- 7 Полупроводниковые гетероструктуры. Гетеропереходы. Сверхрешетки. Селективное легирование. Двумерный электронный газ. Гетероструктурные полевые транзисторы: HEMT, pHEMT, mHEMT. Подвижность электронов в квантовой яме AlGaAs/GaAs/AlGaAs. Технология полевых транзисторов на псевдоморфных гетероструктурах с квантовой ямой. Статические, динамические и СВЧ характеристики рНЕМТ транзисторов. Моделирование гетероструктурных транзисторов с использованием САПР. Применение гетероструктур в СВЧ электронике.
- 8 Устройства наноэлектроники. Приборы и интегральные схемы на основе туннельно-резонансных гетероструктур. Основы одноэлектроники. Эффект одноэлектронного туннелирования. Устройства на одноэлектронных транзисторах.

9 Оптические свойства наноматериалов. Фотонные нанокристаллы. Оптические свойства квантовых ям и квантовых точек. Нанофотонные приборы, устройства и системы. Наноэлектронные лазеры. Наноэлектронные устройства и системы на основе жидких кристаллов. Излучающие приборы на основе органических наноматериалов. Фотоприемные наноэлектронные приборы. Фотоматрицы широкого применения.

Календарный план, наименование разделов учебного модуля с указанием трудоемкости по видам учебной работы представлены в технологической карте учебного модуля (приложение Б).

4.3 Организация изучения дисциплины

Методические рекомендации по организации изучения УМ даются в приложении А.

5 Контроль и оценка качества освоения учебного модуля

Контроль качества освоения студентами УМ и его составляющих осуществляется непрерывно в течение всего периода обучения с использованием балльно-рейтинговой системы (БРС), являющейся обязательной к использованию всеми структурными подразделениями университета.

Для оценки качества освоения учебного модуля используются формы контроля: текущий – регулярно в течение всего семестра, и семестровый (в виде экзамена) – по окончании изучения УМ.

Максимальное количество баллов, получаемое студентом в ходе освоения УМ –300. Пороговому уровню соответствует 150 баллов.

Содержание видов контроля и их график отражены в технологической карте дисциплины (приложение Б). Паспорта компетенций представлены в приложении В.

Оценка качества освоения учебного модуля осуществляется с использованием фонда оценочных средств, разработанного для данного модуля, по всем формам контроля в соответствии с Положением «Об организации учебного процесса по основным образовательным программам высшего профессионального образования» и Положением «О фонде оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации студентов и итоговой аттестации выпускников». В качестве оценочных средств используются: практические занятия, опрос, реферат, экзамен.

6 Учебно-методическое и информационное обеспечение

Учебно-методическое и информационное обеспечение учебного модуля представлено Картой учебно-методического обеспечения (приложение Г).

7 Материально-техническое обеспечение учебного модуля

Для осуществления образовательного процесса по модулю используется лекционная аудитория, оборудованная мультимедийными средствами.

Приложения (обязательные):

- А Методические рекомендации по организации изучения учебного модуля
- Б Технологическая карта
- В Паспорт компетенций
- Γ Карта учебно-методического обеспечения УМ

Приложение A (обязательное)

Методические рекомендации по организации изучения учебного модуля «Наноэлектроника»

А.1 Методические рекомендации по теоретической части УМ

Учебный модуль «Наноэлектроника» разделен на два учебных элемента модуля (УЭМ).

Теоретическая часть учебного модуля направлена на формирование системы знаний в области наноэлектроники. Основное содержание теоретической части излагается преподавателем на лекционных занятиях, а также усваивается студентом при знакомстве с дополнительной литературой, которая предназначена для более глубокого овладения знаниями основных дидактических единиц соответствующего элемента модуля и указана в таблице A.1.

В таблице А.1 отражены разделы модуля, технологии и формы проведения занятий, задания по самостоятельной работе студента и ссылки на дополнительную литературу. Темы и содержание учебных элементов модуля представлено в п. 4.2 данной рабочей программы.

А.2 Методические рекомендации по практическим занятиям

Цель практических занятий – формирование у студентов умений по исследованию нанообъектов.

Темы практических занятий:

- а) знакомство с основами зондовых измерений. Проведение измерений на постоянном токе и СВЧ измерений. Зондовая станция Cascade Microtech. Основные элементы управления и приемы работы;
- б) анализатор параметров полупроводниковых устройств Keithly 4200-SCS. Применение анализатора для проведения измерений вольтамперных (I-V) и вольтфарадных (C-V) характеристик полупроводниковых гетероструктур;
- в) исследование ПТШ и рНЕМТ с использованием зондовых измерений. Расчет статических параметров полевого транзистора с барьером Шоттки с использованием выходных и передаточных характеристик;
- г) моделирование параметров двумерного электронного газа в гетероструктурах с селективным легированием. Модуль управления зарядом;
- д) построение зонных энергетических диаграмм полупроводниковых гетероструктур с использованием программных средств;
- e) атомно-силовая микроскопия. Сканирующая туннельная микроскопия. Solver NEXT и NANOEDUCATOR. Основные возможности и методики измерений;
- ж) методика селективного травления гетероструктур. Определение параметров ДЭГ с использованием холловских измерений. Метод Ван дер Пау;
- и) моделирование рНЕМТ транзисторов. Экстракция параметров линейных и нелинейных моделей. Разработка и создание монолитных интегральных схем на основе гетероструктур с использованием САПР.

Таблица А.1 – Организация изучения учебного модуля «Наноэлектроника»

Раздел дисциплины	Технология и форма проведения занятий	Задания на СРС	Дополнительная литература и интернет-ресурсы
УЭМ 1	- информационная	- подготовка к	1 Борисенко В.Е. Наноэлектроника: учеб. пособие для вузов М.: БИНОМ.
УЭМ 2	лекция	практическим	Лаборатория знаний, 2009. – 223 с.
	- проведение ПЗ	занятиям	2 Рыков С.А. Сканирующая зондовая микроскопия полупроводниковых
	- опрос	- подготовка к	материалов и наноструктур: учеб. пособие для студентов вузов, обучающихся по
		опросу	направлению «Техн. физика» / под общ. ред. В.И.Ильина, А.Я. Шика; Федер.
		- изучение	целевая прогр. «Гос.поддержка интеграции высш.образования и фундам.науки на
		литературы по теме	1997-2000 гг.» СПб.: Наука, 2001. – 52 с.
		- подготовка	3 Щука А.А. Электроника: учеб. пособие / под ред. А.С.Сигова СПб.: БХВ-
		реферата	Петербург, 2005. – 799 с.
Аттестация	- проведение	- подготовиться к	4 Драгунов В.П. Основы наноэлектроники: учеб. пособие для вузов 2-е изд.,
	экзамена	экзамену	испр. и доп Новосибирск: издательство НГТУ, 2004. – 494 с.
			5 Нанотехнологии в электронике / под ред. Ю.А. Чаплыгина М.: БИНОМ.
			Лаборатория знаний, 2005. – 134 с.
			6 Герасименко Н.Н. Кремний - материал наноэлектроники: учеб. пособие для
			вузов М.: Техносфера, 2007. – 351 с.
			7 Неволин В.К. Зондовые нанотехнологии в электронике: учеб. пособие для
			вузов 2-е изд., испр. и доп М.: Техносфера, 2006. – 159 с.
			8 Булярский С.В. Инновационные методы диагностики наноэлектронных
			элементов: учебметод. комплекс / Ульянов.гос.ун-т Ульяновск, 2006 93, [1] с.
			9 Мартинес-Дуарт Дж.М. Нанотехнологии для микро- и оптоэлектроники / пер.с
			англ. А.В.Хачояна; под ред. Е.Б.Якимова М.: Техносфера, 2007. – 367 с.
			10 Технология материалов микро- и наноэлектроники / Моск.гос.ин-т стали и сплавов (технолог.ун-т) М.: Мисис, 2007 542, [2] с.
			11 Успехи наноинженерии: электроника, материалы, структуры / под ред. Дж.
			Дэвиса, М. Томпсона; пер. с англ. А.Е.Грахова; под ред. П.П.Мальцева М.:
			Техносфера, 2011 491с.
			12 Зебрев Г. И. Физические основы кремниевой наноэлектроники: учеб. пособие
			М.: БИНОМ. Лаборатория знаний, 2011 240 с.

А.З Методические рекомендации по самостоятельной работе студентов

Аудиторная и внеаудиторная самостоятельная работа студентов заключается в подготовке к практическим занятиям, опросу, написании рефератов, в подготовке к экзамену.

Опрос проводится в начале занятия (не более 20 мин.) для выяснения объема знаний студентов по определенной теме, состоит из открытых вопросов. При подготовке к опросу студенты используют конспекты лекций и дополнительную литературу. Пример вопросов:

- понятие сверхрешетки;
- зонная структура сверхрешеток;
- электропроводность сверхрешеток;
- электронный газ в квантовой яме;
- свойства электронного газа в сверхрешетках;
- структура и принцип действия НЕМТ транзистора;
- структура и принцип действия рНЕМТ транзистора;
- структура и принцип действия mHEMT транзистора.

Самостоятельно изученные теоретические материалы оформляются в виде **рефератов**, которые обсуждаются на практических занятиях. Крайний срок сдачи рефератов — 18 неделя семестра.

Темы рефератов:

- а) нанотранзисторы кремний-на-изоляторе: технология формирования структур и моделирование транзисторов;
- б) наногетероструктуры на основе GaAs и InP в CBЧ. Современное положение дел и перспективы развития;
- в) наногетероструктуры на основе GaN. Мощные СВЧ-транзисторы на основе широкозонных полупроводников;
 - г) электронные элементы на основе углеродных нанотрубок. Гибкая наноэлектроника;
- д) магнитные мультислои. Использование гигантского магниторезистивного эффекта для конструирования приборов нового поколения;
 - е) перспективы нанотехнологий в фотоэнергетике. Тонкопленочные солнечные батареи;
 - ж) литография в микро- и наноэлектронике. DUV и EUV фотолитография;
- и) атомная инженерия и зондовые методы формирования наноструктур. Сканирующая зондовая литография;
- к) диагностика наноустройств методами сканирующей зондовой микроскопии. Кельвин-зонд микроскопия;
 - л) излучающие приборы на основе органических наноматериалов. ОLED-дисплеи.

Для самостоятельной подготовки к экзамену студентам предлагается по одному вопросу из теоретической части и одному вопросу из практической части УМ.

Вопросы из теоретической части на экзамене.

- 1 Классификация нанообъектов. Роль объема и поверхности в физических свойствах наноразмерных объектов.
- 2 Физико-химические особенности наноструктурных материалов.
- 3 Квантовая механика наносистем. Квантовое ограничение. Квантовые ямы, квантовые нити, квантовые точки.
- 4 Перенос носителей заряда в низкоразмерных структурах. Баллистический транспорт носителей заряда.

- 5 Целочисленный и дробный квантовый эффект Холла.
- 6 Туннельный эффект. Спиновые эффекты.
- 7 Гигантское магнитосопротивление. Кулоновская блокада.
- 8 Углеродные наноструктуры: фуллерены и нанотрубки.
- 9 Молекулярно-лучевая эпитаксия.
- 10 Газофазная эпитаксия из металлоорганических соединений.
- 11 Гетероструктурные полевые транизсторы: НЕМТ, рНЕМТ, тНЕМТ.
- 12 Нанолитография. Нанопечать.
- 13 Графен. Перспективы приборных применений графена в электронике.
- 14 Двумерный электронный газ. Подвижность электронов в квантовой яме AlGaAs/GaAs/AlGaAs.
- 15 Формирование наноструктурированных материалов, их виды, свойства и применение.
- 16 Основы сканирующей зондовой микроскопии и методы ее применения в современных научных исследованиях.
- 17 Атомно-силовая микроскопия.
- 18 Исследование квантово-размерных гетероструктур методами фотоэлектрической спектроскопии и просвечивающей электронной спектроскопии.
- 19 Спектроскопия адмиттанса. Электрохимическое профилирование.
- 20 Холловские измерения. Эллипсометрия.

Вопросы из практической части на экзамене.

- 1 Измерение вольтамперных характеристик полевых транзисторов с барьером Шоттки. Рабочие и предельно-допустимые режимы работы транзистора.
- 2 Измерение барьерных характеристик pHEMT в диодном включении. Определение параметров барьеров Шоттки.
- 3 Метод вольтфарадных характеристик. Барьерная емкость.
- 4 Зависимость барьерной емкости рНЕМТ от напряжения смещения и температуры.
- 5 Расчет крутизны вольтамперной характеристики транзистора по входной характеристике транзистора.
- 6 Расчет крутизны вольтамперной характеристики транзистора по передаточной характеристике транзистора.
- 7 Сравнение статических, динамических и СВЧ характеристик ПТШ и рНЕМТ транзисторов.
- 8 Оценка влияния конструктивно-технологических факторов на параметры ДЭГ и характеристики рНЕМТ на его основе.
- 9 Расчет граничной частоты ПТШ и рНЕМТ исходя из параметров транзисторной гетероструктуры.
- 10 Влияние конструкции НЕМТ структуры на параметры ДЭГ.
- 11 Методики АСМ. Метод постоянной высоты. Метод постоянной силы.
- 12 Методики СТМ. Метод постоянного тока. Метод постоянной высоты.
- 13 Использование ACM для определения геометрических характеристик активной области рНЕМТ транзистора. Исследование морфологии металлизации омического контакта до и после вжигания.
- 14 Отображение профиля распределения легирующей примеси с использованием сканирующей емкостной микроскопии.
- 15 Селективное травление гетероструктур. Прецизионное травление слоев GaAs/AlGaAs.

- 16 Определение параметров ДЭГ с использование холловских измерений.
- 17 Определение параметров ДЭГ при низких температурах.
- 18 Линейные и нелинейные модели рНЕМТ транзистора.
- 19 Экстракция параметров модели FETN для рНЕМТ транзисторов.
- 20 Комплексная диагностика рНЕМТ структур и транзисторов на их основе.

Пример экзаменационного билета

Новгородский государственный университет имени Ярослава Мудрого Институт электронных и информационных систем Кафедра физики твердого тела и микроэлектроники

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № по УМ Наноэлектроника

- 1 Газофазная эпитаксия из металлоорганических соединений.
- 2 Измерение вольтамперных характеристик полевых транзисторов с барьером Шоттки. Рабочие и предельно-допустимые режимы работы транзистора.

Зав. кафедрой ФТТМ

Б.И.Селезнев

Приложение Б (обязательное)

Технологическая карта учебного модуля «Наноэлектроника»

семестр – $\underline{8}$, $3E - \underline{6}$, вид аттестации – <u>экзамен</u>, акад.часов – $\underline{216}$, баллов рейтинга – $\underline{300}$

	№	Трудоемкость, ак.час		Форма текущего	Максим. кол-во			
Номер и наименование раздела	недели	Ауд	иторны	горные занятия		внеауд.	контроля успеваемости	баллов рейтинга
дисциплины, КП/КР	сем.	ЛЕК	ПЗ	ЛР	ACPC	СРС	(в соответствии с	
		JILIK	113	J11	ACIC	CIC	паспортом ФОС)	
УЭМ1	1-10	20	30		10	50	опрос	50
							практические занятия	60
УЭМ2	11-18	16	24		8	40	опрос	40
							практические занятия	60
	2-18						реферат	40
Семестровый контроль						36	экзамен	50
Итого:		36	54		18	126		300

Критерии оценки качества освоения студентами учебного модуля $6 \ 3E = 50 \ 6. \times 6 = 300 \ баллов$:

- «удовлетворительно» от 150 до 209 баллов;
- «хорошо» от 210 до 269 баллов;
- «отлично» от 270 до 300 баллов.

Приложение В (обязательное)

Паспорта компетенций

ПК-2 – Способность аргументировано выбирать и реализовывать на практике эффективную методику экспериментального исследования параметров и характеристик приборов, схем, устройств и установок электроники и наноэлектроники различного функционального назначения (повышенный уровень)

Показатели	Оценочная шкала					
показатели	удовлетворительно	хорошо	онрицто			
Знает методы диагностики	Испытывает трудности при	Недостаточно четко объясняет	Четко объясняет сущность			
наносистем	демонстрации методы	сущность методов диагностики	методов диагностики			
	диагностики наносистем	наносистем	наносистем, может подобрать			
			метод под конкретную задачу			
Умеет исследовать нанообъекты	Испытывает трудности при	Способен аргументированно	Способен аргументированно			
	подборе методики	подобрать методику	подобрать методику			
	исследования нанообъектов	исследования нанообъектов, но	исследования нанообъектов и			
		испытывает затруднения в ее	реализовать ее на практике			
		реализации на практике				
Владеет приемами работы с	Испытывает большие	Допускает незначительные	Способен самостоятельно			
использованием зондовых	трудности в работе с	погрешности в работе с	работать с использованием			
измерений для исследования	использованием зондовых	использованием зондовых	зондовых измерений для			
транзисторных наногетероструктур	измерений для исследования	измерений для исследования	исследования транзисторных			
	транзисторных	транзисторных	наногетероструктур			
	наногетероструктур	наногетероструктур				

ПК-3 – Готовность анализировать и систематизировать результаты исследований, представлять материалы в виде научных отчетов, публикаций, презентаций (повышенный уровень)

Показатели	Оценочная шкала					
Показатели	удовлетворительно	хорошо	отлично			
Умеет анализировать и	Испытывает трудности при	Способен в общем виде	Демонстрирует полную			
систематизировать результаты	анализе и систематизации	анализировать и	готовность анализировать и			
исследований нанообъектов	результатов исследований	систематизировать результаты	систематизировать результаты			
	нанообъектов и при	исследований нанообъектов и	исследований нанообъектов и			
	представлении их в виде	представлять их в виде курсовой	представлять их в виде			
	курсовой работы	работы	курсовой работы			
Владеет приемами работы с	Испытывает трудности при	Допускает неточности при	Самостоятельно владеет			
измерителями характеристик	представлении и обработке	представлении и обработке	приемами работы с			
транзисторных наногетероструктур	полученной информации	полученной информации	измерителями характеристик			
и средствами обработки и			транзисторных			
визуализации полученных			наногетероструктур и			
результатов			средствами обработки и			
			визуализации полученных			
			результатов			

Приложение Г (обязательное)

Карта учебно-методического обеспечения

Учебного модуля «Наноэлектроника»

Направление (специальность) 11.03.04 Электроника и наноэлектроника

Формы обучения очная

Курс <u>4</u> Семестр <u>8</u>

Часов: всего $\underline{216}$, лекций $\underline{36}$, практ. зан. $\underline{54}$, лаб. раб. -, внеауд. СРС $\underline{126}$

Обеспечивающая кафедра ФТТМ

Таблица Г.1 - Обеспечение модуля учебными изданиями

Библиографическое описание издания (автор, наименование, вид, место и год издания, кол. стр.)	Кол. экз. в библ. НовГУ	Наличие в ЭБС
Учебники и учебные пособия		
1 Наноэлектроника. Теория и практика: учеб. для вузов / авт.: В.Е.Борисенко [и др.] 2-е изд., перераб. и доп М.: БИНОМ. Лаборатория знаний, 2013 366 с.	7	
2 Шишкин Г.Г. Наноэлектроника. Элементы, приборы, устройства: учеб. пособие: для вузов / Г.Г.Шишкин, И.М.Агеев М.: БИНОМ. Лаборатория знаний, 2012 406 с.	10	
Учебно-методические издания		
1 Рабочая программа учебного модуля «Наноэлектроника» с приложениями / сост. Э.Ю.Козловский; НовГУ им. Ярослава Мудрого. – В.Новгород, 2017. – 16 с.		

Таблица Г.2 – Информационное обеспечение дисциплины

Электрон-	Примеча-
ный адрес	ние

Таблица $\Gamma.3$ — Дополнительная литература

Библиографическое описание* издания (автор, наименование, вид, место и год издания, кол. стр.)	Кол. экз. в библ. НовГУ	Наличие в ЭБС
1 Борисенко В.Е. Наноэлектроника: учеб. пособие для вузов М.: БИНОМ. Лаборатория знаний, 2009 223,[1]с.: ил.	5	
2 Драгунов В.П. Основы наноэлектроники: учеб. пособие для вузов 2-е изд., испр. и доп Новосибирск: издательство НГТУ, 2004. – 494 с.	20	
3 Нанотехнологии в электронике / под ред. Ю.А. Чаплыгина М.: БИНОМ. Лаборатория знаний, 2005. — 134 с.	2	
4 Зебрев Г. И.Физические основы кремниевой наноэлектроники: учеб. пособие М.: БИНОМ. Лаборатория знаний, 2011 240 с.	10	
5 Щука А.А. Электроника: учеб. пособие / под ред. А.С.Сигова СПб.: БХВ-Петербург, 2006 (2005). – 799 с.	31	

Действит	ельно для учебног	го года/	
Зав. кафе	дрой	Б.И. Селезнев 20 г.	
СОГЛАСОВАНО			
НБ НовГУ:	ДОЛЖНОСТЬ	подпись	расшифровка