ТЕХНИЧЕСКАЯ ФИЗИКА

УДК 539.1.01

МОДЕЛИРОВАНИЕ ТРИГГЕРОВ ЭКСПЕРИМЕНТОВ ATLAS, ALICE, CMS И UA1

Н.В.Абрамовская

SIMULATION OF TRIGGERS OF THE EXPERIMENTS ATLAS, ALICE, CMS AND UA1

N.V.Abramovskaya

Институт электронных и информационных систем HoBГУ, Natalya.Radchenko@novsu.ru

С помощью программы Монте-Карло моделирования Pythia получена статистика в пять миллионов событий как в протон-протонном, так и в протон-антипротонном взаимодействиях. Показано, что неопределенности, которые возникают в результате разных методик отбора событий для последующего анализа триггерами экспериментов CMS, ALICE, ATLAS и UA1, недостаточны для того, чтобы объяснить 20-30% разницу в инклюзивных спектрах протон-протонного и протон-антипротонного взаимодействий.

Ключевые слова: протон, антипротон, взаимодействие, инклюзивное сечение

We have got statistics of five million events of proton-proton and proton-antiproton interactions using Monte Carlo simulation programs Pythia. It is shown that the uncertainties which arise as a result of using different methods for selecting events for later analysis by triggers of the experiments CMS, ALICE, ATLAS and UA1 are not sufficient to explain the 20 – 30% of the difference in the inclusive spectra of the proton-proton and proton-antiproton interactions.

Keywords: proton, antiproton, interaction, inclusive cross-section

Введение

Коллаборации CMS [1], ATLAS [2] и ALICE [3] получили результаты, которые, на наш взгляд, могут изменить существующие представления о взаимодействии адронов при высоких энергиях. Коллаборации опубликовали данные по инклюзивным распределениям заряженных частиц по поперечному импульсу p_T в протон-протонном взаимодействии в системе центра масс $\sqrt{s} = 900$ ГэВ. ATLAS и ALICE сравнили свои результаты с данными коллаборации UA1 [4] по протон-антипротонному взаимодействию. Отношение инклюзивного сечения в $p\overline{p}$ взаимодействию. Сотношение инклюзивного сечению в pp взаимодействии.

$$\frac{1}{2\pi p_T} \frac{d^2 n_{ch}^{p\bar{p}}}{d\eta dp_T} \bigg/ \frac{1}{2\pi p_T} \frac{d^2 n_{ch}^{pp}}{d\eta dp_T} = R$$
(1)

превышает единицу, $R \approx 1,2$. Коллаборация CMS не делала сравнений с данными UA1. Эта оценка была получена нами, $R \approx 1,3$.

Мы определяем инвариантное инклюзивное сечение в стандартной форме $E \frac{d^3\sigma}{dp^3} = \frac{1}{2\pi p_T} \cdot \frac{d^2\sigma}{dy dp_T} =$

 $=\frac{1}{2\pi p_T} \cdot \frac{E}{p} \cdot \frac{d^2\sigma}{d\eta \, dp_T}$. Здесь *E*, *p* — энергия и импульс наблюдаемой частицы, *y* — быстрота, η — псевдобыстрота. Множественное распределение в зависимости от поперечного импульса на единицу

1 12

 d^2

быстроты
$$\frac{d^2 n_{ch}}{dy dp_T} = \frac{1}{\sigma} \frac{d^2 \sigma}{dy dp_T}$$
 или псевдобыстроты
 $\frac{d^2 n_{ch}}{d\eta dp_T} = \frac{1}{\sigma} \frac{d^2 \sigma}{d\eta dp_T}$. Величина σ может быть выбра-
на как $\sigma = \sigma_{inel}$ (неупругое сечение) либо как
 $\sigma = \sigma_{NSD}$ (без одиночной дифракции), в зависимости
от экспериментальной методики. Обозначения
ATLAS и ALICE тогда могут быть записаны как
 $\frac{1}{N_{ev}} \frac{d^2 N_{ch}}{d\eta dp_T} = \frac{d^2 n_{ch}}{d\eta dp_T}$, CMS — как $E \frac{d^3 N_{ch}}{dp^3} = \frac{1}{\sigma} E \frac{d^3 \sigma}{dp^3}$.

Коллаборации ATLAS и ALICE объясняют различие в данных погрешностями, связанными с процедурой отбора событий (триггер) эксперимента UA1. Коллаборация CMS не комментирует различие.

Инклюзивные сечения описываются феноменологически формулой Хагедорна—Тцалиса [5,6]

$$\frac{1}{2\pi p_T} \frac{d^2 n_{ch}}{d\eta \, dp_T} = f(p_T) \frac{dn_{ch}}{d\eta} \,. \tag{2}$$

Эта формула применяется экспериментаторами для описания инклюзивных сечений и аппроксимации их к малым значениям p_T как для pp, так и для $p\overline{p}$ взаимодействий. Причем $f(p_T)_{pp} \approx f(p_T)_{p\overline{p}}$. Тогда из результатов ATLAS, ALICE и CMS и сравнения их с UA1 следует

$$\frac{dn_{ch}^{p\bar{p}}}{d\eta} > \frac{dn_{ch}^{pp}}{d\eta}.$$
(3)

В то же время прямое измерение коллаборациями ATLAS, ALICE и CMS дает

$$\frac{dn_{ch}^{pp}}{d\eta} \approx \frac{dn_{ch}^{pp}}{d\eta}.$$
 (4)

В данной статье приводятся соображения в пользу соотношения (3), которое показывает, что для $p\bar{p}$ существует дополнительный подпроцесс рождения адронов. Этот подпроцесс связан с рождением адронов из трех кварковых струн — конфигурации, которая существует в $p\bar{p}$ рассеянии, но отсутствует в pp рассеянии [7]. Обсуждается, возможно ли объяснить разность в инклюзивных сечениях $p\bar{p}$ и pp взаимодействий различными триггерными условиями в экспериментах UA1 и ATLAS, ALICE, CMS. Кроме того, рассматриваются триггерные условия эксперимента UA5 [8], в котором также получены данные по инклюзивным сечениям в $p\bar{p}$ взаимодействии при $\sqrt{s} = 900$ ГэВ.

Условия триггеров

Схематично условия триггеров рассматриваемых экспериментов приведены на рис.1.

Рис.1. Схематическое изображение условий триггеров различных экспериментов. Указаны интервалы псевдобыстроты, в которых должна быть зарегистрирована частица (стрелка), тип нормировки (*inel* — неупругие сечения, *nsd* — сечения без одиночной дифракции), а также дополнительные требования экспериментов, для ATLAS — поперечный импульс частицы должен быть больше 500 МэВ, для CMS — энергия в калориметрах должна быть больше 3 ГэВ

Коллаборация ATLAS [2] привела данные для случаев, когда по крайней мере одна частица с поперечным импульсом $p_T > 500$ МэВ находится в интервале псевдобыстроты $|\eta| < 2,5$. ATLAS нормирует свои данные на неупругое сечение σ_{inel} , хотя все другие коллаборации нормируют свои данные на сечение без

одиночной дифракции σ_{NSD} . Они достигают этой цели, используя логику «двухплечевого» триггера, которая предполагает две области псевдобыстроты, разделенные провалом. Если имеется хотя бы одна частица в каждой из этих областей, то считается, что этот случай является событием без одиночной дифракции. Коллаборация ALICE [3] требует два совпадающих сигнала в пределах псевдобыстроты $-3,7 < \eta < -1,7$ и 2,8 < $\eta < 5,1$. Коллаборация CMS [1] требует совпадения сигналов от калориметров с энергией большей, чем 3 ГэВ, на каждой положительной и отрицательной областях интервала 2,9 < $|\eta| < 5,2$. Коллаборации UA1 [4] и UA5 [8] требуют совпадения сигналов в областях 1,5 < $|\eta| < 5,5$ и 2 < $|\eta| < 5,6$ соответственно.

Конечно, логика «двухплечевого» тригтера требует некоторых модельно зависящих поправок, и они обычно делаются с помощью Монте-Карло генераторов, в частности, с помощью программы Pythia [9]. Мы не будем рассматривать модельно зависимые поправки, но попытаемся исследовать чистый эффект различных тригтеров на одном и том же ансамбле сгенерированных событий. Мы не обсуждаем проблемы, связанные с эффективностью детекторов, поскольку эти данные доступны только членам коллабораций.

Результаты

Коллаборации ATLAS и ALICE заявили, что 20% различие между их данными и данными UA1 связаны с условием «двухплечевого» триггера UA1, который отбрасывает случаи с малым числом частиц. К сожалению, они не представили количественной оценки этого триггерного эффекта.

Мы сгенерировали ансамбль в пять миллионов неупругих протон-протонных событий, используя программу Pythia, настройки по умолчанию, настройки Perugia0 [10] и D6T [11], которые наиболее часто используются экспериментаторами. Доля дифракционных событий, которая проходит через критерии отбора, приведена в таблице.

Доля дифракционных событий ансамбля сгенерированных протон-протонных соударений, которые остаются после применения условий триггеров различных экспериментов

	Доля событий одиночной дифракции, %		
	Pythia, настройки по умолчанию	Pythia, Perugia 0,	Pythia, D6T
ATLAS	9,5	8,0	9,5
ALICE	5,8	5,4	5,8
CMS	4,3	4,0	4,2
UA1	9,1	9,3	9,1
UA5	6,3	5,9	6,3
	Доля событий двукратной дифракции, %		
ATLAS	5,1	4,3	5,0
ALICE	4,4	4,1	4,4
CMS	4,7	4,2	4,6
UA1	9,5	9,4	9,4
UA5	6,3	5,8	6,2

Рис.2. На верхних панелях показаны инвариантные инклюзивные сечения при условиях триггера UA1 и условиях ATLAS (a), ALICE (b) и CMC (c) при энергии $\sqrt{s} = 900$ GeV, полученные на одном и том же ансамбле протон-протонных соударений. На нижних панелях показаны отношения этих сечений, как условного протон-антипротонного триггера к протон-протонному. Сплошная линия на единице приведена для наглядности

Рис.3. На верхних панелях показаны инвариантные инклюзивные сечения при условиях триггера UA1 с учетом отсеивания событий с малой множественностью в UA1 и условиях ATLAS (a), ALICE (b) и CMC (c) при энергии $\sqrt{s} = 900$ GeV, полученные на одном и том же ансамбле протон-протонных соударений. На нижних панелях показаны отношения этих сечений, как условного протон-антипротонного триггера к протон-протонному. Сплошная линия на единице приведена для наглядности

Рис.4. Влияние условий триггеров UA5, ALICE and CMS на измерение плотности псевдобыстроты, полученное с помощью программы Пифия, на вставке — данные экспериментов

Если инклюзивные сечения содержат большую долю дифракционных событий, то на графике они будут лежать ниже, чем сечения без дифракции. Это связано с тем, что дифракционные события характеризуются малой множественностью. Так что эффект от различных условий триггера прямо противоположен наблюдаемому — триггер эксперимента UA1 понижает данные, как показано на рис.2, отношение сечений получается меньше, чем единица.

Коллаборация UA1 привела число отброшенных триггером событий 12% при $\sqrt{s} = 900$ ГэВ. В современных экспериментах доля отброшенных триггером событий мала (около процента). Для того чтобы воспроизвести особенности данных UA1, мы случайным образом отбросила 12% событий с малый множественностью n_{ch} ≤16 из ансамбля сгенерированных событий, которые прошли через требования триггера UA1. Результат показан на рис.3. Мы видим, что объединенный эффект от различных триггерных условий и отбрасывания событий с малой множественностью дают отношение, близкое к единице, так что эти два эффекта фактически сокращают друг друга. Поэтому наблюдаемый эффект в реальных, а не симулированных данных может быть причастен к разнице в протон-протонном (коллаборации CMS, ATLAS и ALICE) и протон-антипротонном (UA1) взаимодействиях. Необходимо отметить, что триггер ALICE дает более низкое отношение из-за различия окон псевдобыстроты для данных.

Эффект действия различных триггерных условий может быть также важен в измерениях плотности псевдобыстроты $dn_{ch}/d\eta$ (рис.4). Эффект триггера коллаборации UA5 [8] понижает величину плотности псевдобыстроты. Коллаборация UA5 не отбрасывала данные, прошедшие через триггер, поэтому фактические данные являются одинаковыми для UA5, ALICE и CMS, как видно из вставки в рис.4. В действительности данные UA5 должны быть выше, но эффект триггера UA5, который пропускает больше дифракционных случаев, чем современные триггеры, подавляет это различие.

Заключение

Показано, что эффекты триггеров различных экспериментов не могут объяснять различия в инклюзивных распределениях протон-протонных и протон-антипротонных взаимодействий при энергии $\sqrt{s} = 900 \ \Gamma$ эВ.

Автор благодарит А.В.Дмитриева за обсуждения.

Работа на начальном этапе была поддержана грантом П1200 Министерства образования и науки.

^{1.} Khachatryan V. et al. CMS Collaboration. Transverse momentum and pseudorapidity distributions of charged hadrons in pp collisions at (\sqrt{s}) = 0.9 and 2.36 TeV // JHEP. 2010. V.1002. P.041. arXiv:1002.0621 [hep-ex]

- 2. Aad G. et al. ATLAS Collaboration. Charged-particle multiplicities in pp interactions at s√=900 GeV measured with the ATLAS detector at the LHC // Phys. Lett. B. 2010. V.688. P.21-42. arXiv:1003.3124 [hep-ex]
- Aamodt K. et al. ALICE Collaboration. Transverse momentum spectra of charged particles in proton-proton collisions at s√=900 GeV with ALICE at the LHC // Phys. Lett. B. 2010. V.693. P.53-68. arXiv:1007.0719 [hep-ex]
- Albajar C. et al. UA1 Collaboration. A Study of the General Characteristics of pp⁻ Collisions at s√ = 0.2-TeV to 0.9-TeV // Nucl. Phys. B. 1990. V.335. P.261-287.
- Hagedorn R. Multiplicities, P(t) Distributions And The Expected Hadron -> Quark Gluon Phase Transition // Riv. Nuovo Cim. 1984. V.6N10. P.1-50.

- Tsallis C. Possible generalization of Boltzmann-Gibbs statistics // J. Stat. Phys. 1988. V.52. P.479-488.
- Abramovsky V.A., Radchenko N.V. Experimental evidences of difference in pp and pp⁻ interactions at high energies // arXiv:1111.4978 [hep-ph]
- Alner G.J. et al. UA5 Collaboration. Scaling of Pseudorapidity Distributions at c.m. Energies Up to 0.9-TeV // Z. Phys. C. 1986. V.33. P.1-6.
- Sjostrand T., Mrenna S., Skands P. PYTHIA 6.4 Physics and Manual // JHEP. 2006. V.5. P.026. hep-ph/0603175
- 10. Skands P.Z. The Perugia Tunes // arXiv:0905.3418v1 [hep-ph]
- Sjostrand T., Skands P. Transverse-momentum-ordered showers and interleaved multiple interactions // Eur. Phys. J. C. 2005. V.39. P.129-154.