2174 [EEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 40, NO. 9, SEPTEMBER 1992

Fast Algorithms for the Discrete Cosine Transform

Ephraim Feig, Fellow, IEEE, and Shmuel Winograd, Fellow, IEEE

Abstract—We introduce several fast algorithms for comput-
ing discrete cosine transforms (DCT’s) and their inverses on
multidimensional inputs of sizes which are powers of 2. Be-
cause the one-dimensional 8-point DCT and the two-dimen-
sional 8 x 8-point DCT are so widely used, we discuss them in
detail. We also present algorithms for computing scaled DCT’s
and their inverses; these have applications in compression of
continuous tone image data, where the DCT is generally fol-
lowed by scaling and quantization.

I. INTRODUCTION

ISCRETE cosine transforms (DCT’s) ar: probably
the most widely used transforms in the signal pro-
cessing of image data, especially in coding for compres-
sion [1], [20]. In these applications, a two-dimensional
DCT on rather small input sizes (8 X 8 or 19 X 16) is
used. Because of the wide-spread use of DCT’s, research
into fast algorithms for their implementatior has been
rather active [2], [5]-[12], [14], [16]-[18], [21]-[24]. A
book devoted to DCT’s and their applications [19] was
recently published. The algebraic structure of DCT’s has
also been investigated [6], [10] in order to obtain bounds
on the arithmetic complexity of their computetions. The
works in [7], [9], [10], [23], [24] are particulaily relevant
to the present work, as they address the two-dimensional
case directly, rather than treating it naively as a row-col-
umn implementation of the one-dimensional case.
Section II gives a detailed description of the structure
of the one-dimensional DCT on 8 points, and uses this to
build various algorithms for its implementation. The main
result here is that the DCT matrix on 8 points is readily
converted (with additions and permutations only) to a di-
rect sum of matrices corresponding to certain polynomial
products modulo irreducible polynomials. Sect.on III uses
the constructions of the previous section to ootain algo-
rithms for the two-dimensional DCT on 8 X 8 points. It
uses the classical result that the tensor product of fields is
isomorphic to a direct sum of fields. A particular instan-
tiation of this result to the present case is worked out in
detail. As an application, we present an algorithm for the
DCT on 8 X 8 points which uses 94 multiplications and

Manuscript received September 2, 1990; revised Septembzr 27, 1991.

The authors are with the IBM Research Division, Thoras J. Watson
Research Center, Yorktown Heights, NY 10598.

IEEE Log Number 9201588.

454 additions. A similar algorithm which uses 96 multi-
plications and considerably more additions was presented
in [7]. We also give an algorithm which uses only 86 mul-
tiplications but too many additions to be practical.

In most coding applications the DCT is postprocessed
with scaling and quantization. Therefore one need not ac-
tually compute the DCT itself but rather a scaled version
of it, and then compensate for the scale factors in the post-
processing. This observation leads to significant algo-
rithmic savings [2], [9], [10], [24]. In Section IV we pre-
sent an explicit factorization of the 8-point DCT matrix
which takes advantage of this observation, and obtain
from this an efficient algorithm for a scaled two-dimen-
sional DCT on 8 x 8 points. This algorithm uses 54 mul-
tiplications, 462 additions, and 6 shifts (multiplications
by 1/2). Various other factorizations for isolating scale
factors are presented in Section VI.

The DCT matrix is orthogonal; its inverse is its trans-
pose. Our factorizations are easily transformed into fac-
torizations of the inverse DCT via either direct inversion
or transposition. These lead to two different types of fac-
torizations which, in turn, yield different algorithms.
These are briefly discussed in Section V. The arithmetic
complexity of the algorithms we obtain here are the same
as the corresponding algorithms for the forward direction.

Finally, the general theory for the DCT and the scaled
DCT algorithms on input sizes which are powers of 2 is
presented in Section VIIL.

II. Tue 8-PoinT DCT

The N-point DCT is defined by forO < n < N — 1 the
equations
N—-1

27n(2k + 1)

= e 1
Yn Cp k§0 cos 4N Xk ()
where ¢, = 1/VNand ¢, = V2/Nfor1l =n <N - 1.
Its inverse (IDCT) is given by

Nz‘:' 2mn(2k + 1)
Xy = =0 [0} T Cp¥Yn-

In this section we develop explicitly algorithms for the
DCT on 8 points. These are important in image process-
ing applications, and also the ideas presented here extend
to the general case of the DCT on any 2" set of points.

@

1053-587X/92$03.00 © 1992 IEEE

FEIG AND WINOGRAD: FAST ALGORITHMS FOR THE DISCRETE COSINE TRANSFORM 2175

Setting y(k) = cos (2wk/32), the 8-point DCT matrix is

(v @ @ v @ @ 1@ () |
Y1)y 3 O @D = =S =@ —v(D)
Y2 6 —y©6) —v2 —¥2 —v6) vO D
¥3) —y —) =G5 S v D O
Y@ -y —v@ @) @ @ @ @
y5 -y AT B =3 -y v =)
Y6 —v2) @) —v6) —¥® @ -2 O
LD =) @) (D Y —-v® S —v(O) |

3

Ry
[
DO =

We will index the rows of Cg from 0 to 7. Let P ;, be the permutation matrix acting on the rows of Cg reordering
them as follows: 0, 2, 4, 6, 1, 3, 5, 7. Let P 5 be the permutation matrix acting on the columns of Cg by keeping
the first four columns fixed and reversing the order of the last four columns. Let I, denote the n X n identity matrix,

())

and define Ry = F ® I,. (Recall, in general, if A is the m X n matrix (4; ;) and B is the p X ¢ matrix (b; ;), then the
tensor product A ® B is the mp X nq matrix composed of the m X n blocks (a;;B).) Then

V@ @ @ @
¥2) (6 —v©6) —vQ2)
V@) —y@ @ @)
Y6 -vD ¥ —x©

P 1) KsPg 2Ry = CH)

1) 3@ & D
¥3 (D =1 =5
¥S) -y v 3
¥ =5 v@) —v()

In order to understand the structure of the bottom right 4 x 4 block, which we shall label G,, we digress and look
at the ring structure of Zs,, the integers between 0 and 31 with addition and multiplication modulo 32. The odd
integers in Z;, form a group Us, under multiplication modulo 32, called the group of units of Zs,. It is well known
that U, is isomorphic to Z, @ Zg. Three can be taken as a generator for the Z¢ summand in the direct sum repre-
sentation for Us,, and we compute the cyclic subgroup of U, of order 8 to be the powers of 3: {1,3,9,27,17, 19,
25, 11}. Thus, the bottom right 4 X 4 block can be written as

3% 3H) 3 -3
y3hH @) -3 —v3
¥3 -3 —v3) v3H
-3 -3 43H 3%
Observe that y(3**/) = —y(3%),j = 0, 1, 2, 3. Also v(9) = —v(7) and v(27) = (5). Define

4

100 O
Pay = 010 O
000 -1
001 O

2176 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 40, NO. 9, SEPTEMBER 1992

P,y is defined so that its action on the column vector
(DY) ¥(D)' is precisely (v(3)¥(3)¥(3)v(3))',

thereby reflecting the ring structure in Z3,. Then,
Y3% v3Y) ¥3 3
Y3 3 3 4(3h
v3H) v3) v3H 3
Y3 v3H v3%) 39,

¥3%) v3) 3 w3
y3H A3 @) -39
Y3 3 -3 -v3h
¥3) —v3%) —3H -v3Y
6

The last matrix above is a signed-circulant matrix. Fi-

nally, reversing the order of the columns in
o

P(4‘1)G4P(4‘|) ylelds

S -1
P(d,])G4P(4, 1)

Y3 v3hH 43H 3%

G, = —v3) @) 3 A6} .
—¥3) =3 G 3%
=3 —v3) —v3% 3>

The matrix G, can be viewed as an element in the reg-

ular representation of the polynomial ring in the variable
u moduluo #* + 1. To be precise, if

Wo v3) 3 v3H 139
wil -3 B) 2B ABH
R B R DRV b Y & o W € '
w3 (3 —v3H —v(3% 4(3)
2]
vy
o ®)
U3
then also

¥(3) = ¥y3)u — ¥3Hu? - ¥3*ud)
vy + viu + vzuz + vgus)
= (wy + wiu + wyu? + wyu) mod u‘ + 1. (9)

Observe that the first factor in the above equation can be
written as

M

y3 . (10)
j=0

The top left 4 X 4 block of (4) equals V2 times the
4-point DCT matrix C,. It itself yields a similar block

diagonalization. Namely, let P ,, be the permutation ma-
trix acting on the rows of C, reordering them as follows:
0,2, 1, 3. Let Py 3, be the permutation matrix acting on
the columns of C, by keeping the first two columns fixed
and reversing the order of the last two columns. Let Ry,)
= F @ I,. Then

P(4,2)(‘/5 C)Pu»Ra

Y4 v@
4) —~(4
_, ¥4 —v@4) A
¥2) v(6)
v6) —v(2)

Notice that the 2 X 2 block on the bottom right is again
a signed-circuit matrix. We will define G, to be this block,
after the order of its columns has been reversed:

6 2
6, =< ¥(6) ¥)>.)
—v2) ¥(6)

The matrix G, can also be viewed as an element in the
regular representation of a polynomial quotient ring.
Namely, if

Wi —7(2) 7(6) (4
then also

(v(6) — Yy u)(wy + viu) = (wo + wyu) mod u® + 1.
(14)

Also, the 2 X 2 subblock on the top left of (11) is the
2-point DCT matrix C,, and it yields the diagonalization

v(4)
CF=2 . (15)
’ < 7(4)>

The 1 X 1 subblock (y(4)) will be denoted by G;. Putting
all these factorizations together yields, after slight arith-
metic manipulation, the following factorization for the
8-point DCT matrix:

Cs = PgKBB (16)

where Py is the signed-permutation matrix

|
=

o O O O = O O O

17

o © O O o o ©
o O O O ©

o

IO o O O O ©o O v—‘l
S O O = O O O O
o O O O O = o O
S = O O O O O O
S O O O o O

—

FEIG AND WINOGRAD: FAST ALGORITHMS FOR THE DISCRETE COSINE TRANSFORM 2177

G,
Ky =3 @ (18)
G,
G,
and B is the rational matrix
B = B,B,B; (19)
where
1 100 0 0 00]
1 =100 0 0 00
0O 001 0 0 00
B.=O 010 0 0 00 0
0 000 0 0 —-10
0 000 O O 01
0 000 O -1 00
0 000 -1 0 0 0|
(10 0 10000]
01 1 00000
10 0-10000
32201—100000 -
00 0 01000
00 0 00100
00 0 00010
00 0 0000 L
1000 0 0 0 1]
0100 0 0 1 0
0010 0 1 0
33=000110 0)
1000 0 0 -1
0100 0 0 -1 0
0010 0 -1 0 0
0001 -1 0 0 0

This factorization leads to an algorithm for computing
the product of an arbitrary vector by Cg. First we compute
the product by the matrix B, which can be done (via its
factorization) with 2 + 4 + 8 = 14 additions. We then
compute the product of the result by Kj; the details will
be discussed shortly. And we finish with a signed per-
mutation.

Multiplication by K will be done by computing inde-
pendently the various products by (1/2) G;. Each of these
is equivalent to multiplication of polynomials modulo an

irreducible polynomial, for which fast algorithms are
known [27]. One way of doing these is via the Toom-
Cooke algorithms, which is a version of Lagrange inter-
polation. Computing the product by (1 /2) G, requires one
“‘essential’’ (in the language of [27]) multiplication. A
product by (1/2)G,) can be done with three essential
multiplications. A product by (1/2)Gj can be done with
seven essential multiplications, but quite a few additions.

The product by (1/2) G, can be done using a standard
“‘rotator’” product. We use the identity

(xp + x1)y
Xo —Xi Yo 1 -1 0 0 v
= xi(yo + ¥

X1 Xo Yi O 11
(X0 — XN

(23)

The sums involving the x; are precomputed; the above
suggests an algorithm with 3 additions and 3 multiplica-
tions.

As for the product by (1/2) G,, the minimal algorithm
using 7 multiplications is quite impractical. An algorithm
using 9 multiplications can be obtained using the nesting
procedure. For the general problem of multiplying poly-
nomials modulo #* + 1, partition the representation ma-
trix-vector product

Xo —X3 —X —X Yo
X Xo —X3 X Y1 24
X2 Xy Xo —X3 Y2
X3 X2 Xy Xo, y3
into 2 X 2 blocks of size 2 X 2 each, say
X, X Y,
0 1 0 25)
X, X/ \%
with
Xy —X X, X
X0:<0 3> X1=<2 |> 26
X1 Xo X3 X
and
Y, = <y °> Y, = <y2>. @7
Y1 Y3

We can use the recipe of (23) but replace each product
with a matrix-vector product and each sum with a vector
sum. The matrix-vector products are all of the form

xo(Yo + y1)
Xg X1 Yo 1 -1 0 ol Yo !
= X0 — XDN

Xy Xg Y1 1 0 1

(x; — x0)Yo

(28

which can be done with 3 multiplies and 3 additions (the
sums involving the x; are precomputed). Since a rotator

2178 IEEE TRANSACTIONS ON SIGNAL PROCESSING. VOL. 40, NO. 9, SEPTEMBER 1992

can be computed with 3 additions and 3 multiplies, the
matrix-vector product of (24) can be done with 3 X 3 =
9 multiplications and (3 X 3) + (3 X 3) = 18 additions.
Thus, with this implementation, the product by Cy can be
done with 14 multiplications and 35 additions. An attrac-
tive feature of this algorithm is that each computation path
contains only one multiplication. That is, the computation
never involves products of factors which are themselves
sums of products. This is significant when one is con-
cemned about bit requirements for accuracy of computa-
tion.

Alternately, the product of (1/2) G, with a vector can
be done using the following identity:

1
G, = ;D;'H, G, H,, (29)
G
where
¥(5)
{
D, = (1)
¥(3)
¥(7)
1 1 -10
-1 1 01
H, =
-1 -1 -1 0
1 -1 01
and
10 0 0
u 01 0 1
w2 10 0 -1
01 -1 0

Thus, the product by (1/2) G, can be done us:ng 3 addi-
tions (multiplication by H, ,), followed by one multipli-
cation by (1/4), one by (1/4)y(4), and one by a rotator
(multiplication by [1/4](1 @ G, @ G,)), followed by 6
more additions (multiplication by H,), followed by 4
multiplications (multiplication by Dy ". Altogether, we
can compute the product by (1/2) G, with 8 muitiplica-
tions and 12 additions, and hence the product by Cg with
13 multiplications and 29 additions. This algcrithm uses
considerably fewer additions than the previous one, and
one less multiplication, but some of the mulriplications
are nested.

Remark 2. 1: Various similar algorithms in the literature
for the DCT on 8 points [5], [24], [21] use 13 multipli-
cations (some of which are nested) and 29 addirions. Note
when reading these references that they claim 12 multi-

plications because they renormalize the top output; in their
definition for the DCT matrix, the first row of the matrix
in (3) is rational. Their DCT matrix is no longer orthog-
onal. The constructions given here, when applied to this
renormalized DCT matrix, will yield an analogous algo-
rithm with one multiplication reduced to a multiplication
by 1.

Remark 2.2: Our factorization into a direct sum of
polynomial products could have been obtained by notic-
ing that the N-point DCT matrix is essentially embedded
in a 4N-point DFT. This was first pointed out by [11].
However, we have decided here to obtain the factoriza-
tion directly from the definition of the DCT.

Remark 2.3: The direct sum in equation 18 could be
viewed as a system of 4 polynomial products modulo u —
1,u+1,u”+ 1,and u* + 1. It is well known [27] that
these can be brought to a cyclic convolution (i.e., a single
polynomial product modulo u® — 1) using only rational
operations. The relationship between the DCT and cyclic
convolution was already pointed out in [7].

Observe that (29) yields a procedure for transforming
the product by G,, which can be thought of as the “‘core”
half of the 8-point DCT computation, into essentially a
4-point DCT followed by multiplication by a diagonal
matrix. Similarly, G, can be factored to a diagonal matrix
times something which is essentially a 2-point DCT ma-
trix. Namely,

-1
¥(6) 1 1
G, =1
’ < v<2>> <—1 1>
1 10 o
G/)\-1 1) 0)

This factorization gives an alternate method for comput-
ing the product by G, with 3 additions and 3 multiplica-
tions, but these are nested. In general, Gy can be factored
to a diagonal matrix times a matrix which is essentially
the core of Cy-1, thereby yielding a recursive algorithm
for the DCT on 2™ points. More on this in Section VIIL.

III. Tue 2-D DCT oN 8 X 8 POINTS

Computation of the 8 x 8 DCT involves the product of
the matrix C; ® Cg with a 64-point vector. A standard
theorem on tensor products [27] applied to (16) yields the
identity

Cy® Cy = (Ps Q@ Py)(Kzg ® Kg)(B® B). (31)
Also,

where @ denotes the matrix direct sum, and the indices
j» k run through the values 1, 1, 2, 4 in lexicographic
order. Equation (31) suggests the following algorithm for
computing the product by Cy & Cg: compute the product

FEIG AND WINOGRAD: FAST ALGORITHMS FOR THE DISCRETE COSINE TRANSFORM

by B & B using, say, the row-column method, with 2 X
8 X 14 = 224 additions. Then compute separately the
products by G; ® G, and finish with a signed-permuta-
tion defined by Py ® Pg. (The factor 1/4 can either be
computed at the end with shifts or, preferably, incorpo-
rated into the products by the G; ® G,. We will therefore
ignore this factor in the ensuing discussion). The key to
our new algorithms is that the products by G, & G; can
be done much more efficiently than by the row-column
method when both j and k are greater than or equal to 2.
The remainder of this section carefully develops algo-
rithms for computing these products. As is typical with
fast algorithms for signal processing, these algorithms are
based upon matrix factorizations. These factorizations are
based on some deep algebraic structures, which we dis-
cuss here in great detail. However, we feel that after plod-
ding through the motivating example, the general results
which appear in Section VII will be straighforward.

Let us consider first the simplest case, G; & G,, in
considerable detail. Since the product of a 2-vector by G,
can be done with 3 multiplications and 3 additions, the
product of a 4-vector by G, ® G, can be done in ‘‘row-
column’’ fashion using 4 products of 2-vectors by G,,
hence with 12 multiplications and 12 additions.

We can improve upon this. By direct computation,
using the trigonometric identity

2179

We see two things from the construction above. First,
the two summands were matrices of rank 2 and there is a
change of basis which makes them sparse. Second, the
particular number theoretic properties of the cosine func-
tion yielded enormous simplifications. From a dense ma-
trix of irrational numbers, we obtained a sparse system
with very few nonrational entries. We will next obtain an
explicit recipe for achieving this sparseness, which will
extend to the general case. The number theoretic simpli-
fications will fall out of the recipe. A general theory ac-
counting for these is beyond the scope of this paper; the
interested reader is referred to [10] where we describe the
simplifications using a totally different approach.

We should observe two things about the matrix G,.
First, it is of a very special form: the diagonal entries are
identical, and the antidiagonal terms are negatives of each
other. Second, the entries in the matrix satisfy an alge-
braic relation, namely, y(2)* + v(6)* = 1.

As for the first observation regarding the special form
of the matrix, the set of all such matrices with entries in
some field ® form an algebra over ®. That is, they are
closed under multiplication and ®-linear combinations.
The first assertion is easily verified:

<f0 —fl> < _81>
fi S 8o,

8o
81

2y(@y®b) = va + b) + y(a — b) (33) - <f°g° ~figr —(figo + fog ") (35)
) figo t fo&r fogo — fi&
we obtain
6 2 6 2
GZ®G2=< v(6) v()>®< v(6) v()>
—v(2) ~(6) —v(2) ~(6)
¥O)v(©6) v©)¥(2) ¥(2)v(6) Y2)¥(?2)
_ —¥(6)¥(2) Y(6)y(6) —Y¥(2)¥(2) ~(2)¥(6)
=¥ y(6) —v2)v2) v(6)¥(6) ¥(6)v(2)
Y2)v2) —vQ2)v(6) —7(6)¥(2) ¥(6)¥(6)
v(0) — v4) v4) ¥4 ¥(0) + v(4)
1 —y(4) ¥0) — v@) —v(0) — y4) (@)
: —y@ =0 - y@ (0 — v Y(4)
¥(0) + v(4) —v4) —-v4) ¥(0) — ~(6)
1 0 01 -y4) y@ v@ @
0 1 -10 —v(d) —y(@d) —v@ 4
2% +% ¥4) —v@) —-v4) @ (34)
0 -1 120 -y4) -v@ —-v@ v@®
1 0 01 Y4 —v@ —-v@) —v@

Multiplying a vector by the first summand of the last expression above can be done with 2 additions (and/or subtrac-
tions) and 2 multiplications by 1/2. Multiplying a vector by the second summand can be done with 4 additions and
2 multiplications by y(4) /2. These could then be combined with 4 additions. Hence, multiplying a vector by G, ®
G, can be done with 10 additions, 2 multiplications, and 2 multiplications by 1/2.

2180 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 40, NO. 9, SEPTEMBER 1992

and the second assertion is obvious. Let us call this al-
gebra B3,(®). If & is an extension of Q, then the set 3,(Q)
of matrices of the form in (35) whose entries are all in Q
is a subalgebra (in fact, a field) of 3,($).

Consider next the algebra Q [u] / (u® + 1), whose ele-
ments are all linear polynomials in # with coefficients from
Q, with operations addition and multiplication modulo u*
+ 1. Observe that

(fo +finy(g + giw

= (fogo — fig) + (figo + fog)u mod (u® + 1).

(36)
Equations (35) and (36) highlight the isomorpt.ism
p2: Qul/<u® + 1) = By(Q) 37
given by
fo =h
p2([+fu)=< > (38
VA

We use the subscript 2 to highlight the fact that the range
of p, is in M,(Q), the ring of 2 X 2 matrices with entries
from Q. That p, is 2 homomorphism is verified by noting
that for every p,, p, € Q[u] /<u® + 1),

p2Ap1 + p2) = pa(p1) + p2(p2) (39

A Pr1P2) = pa(p1) P2 Pa)- (40)

And it is easy to verify that p, is one to one and onto.
We can write

dlul/(u® + 1) = Qu)/{u?® + 1) ® &.
(41)

This notation highlights the fact that, whereas the coeffi-
cients of the polynomials in ®[u]/ (u? + 1) are from &,
the modulo u? + 1 structure is defined over Q (that is,
the polynomial u? + 1 has rational coeflicients). In fact,
Qlu]/<u* + 1) is naturally embedded in ®[«]/{u’ +
1.

Denote by ¥ the field extension of Q obtained by ad-
joining i to it. Then

¥ o= Qul/{u® + 1) (42)

p, can be viewed as a homomorphism of ¥ into 3,(Q)

with
o 0 -1
(i) = . 43
2 {0 43)
We can extend p, to a homomorphism
b2 M, (¥) = M,,(Q) (44)

by having p, act independently on the entries of matrices.
Thus, for M = (m; ;) € M, (¥),

pa(M) = (pa(m;). 45)

It is not difficult to verify that p, is a ring homomorphism.
Now consider the matrix

(46)

and let

Xo —X
X = 47)
X1 Xo
where x,, x; are elements in any extension of Q. Direct
computation yields the well-known identity

| Xo + ixl 0
nxvst= (7 T)
[1

This identity is valid, in particular, for all xg, x, € . We
say that V, diagonalizes the algebra 8,(®).

One can verify the following identity by direct com-
putation:

(48)

def
Dy = py(V)(Gy @ Gpa(V) ™

_ <7<6)p2<1) ~ Y@ pali)

p2(0) >
p2(0) ¥(6) (1) + ¥(2)pafi)

D, , is block diagonal. But, moreover, notice the similar-
ity between the right-hand side of (48) and the first factor
of the right-hand side of (49). It is as if we had substituted
xo = y(6) and x; = —v(2) and then applied p, to the ma-
trix in (48) to obtain the matrix in (49). The reason we
write “‘as if’’ is subtle; see the remark after equation (61).

Explicit computation of the last expression yields fur-
ther simplifications:

—y4 @ 00
-y4 -v@ 00
D,, = (50)
0 0 10
0 0 01

The block diagonalization was predicted above, but the
special nature of the entries in the diagonal blocks is due
to the fact that the entries in G, satisfy an algebraic rela-
tion.

p,(V,) is the change of basis which transforms G, ® G,
to a sparse matrix, and in the process, the number theo-
retic properties of the cosine function yields substantial

FEIG AND WINOGRAD: FAST ALGORITHMS FOR THE DISCRETE COSINE TRANSFORM 2181

simplification. From (49) and (50) we obtain directly

1 01 0
10 1
G, ® Gy = 0 -
01 0
-y@/2 y@®/2 0 0
-¥4)/2 —y@/2 0 0
0 0o 1/2 0
0 0 0 1/2
10 0 -1
01 1 0
10 0 1 G
01 -1 0

From this factorization, one can easily construct an al-
gorithm for computing the product of a 4-vector by G,
&® G, with 2 multiplications, 10 additions, and 2 shifts.
We will now generalize the above construction. Let p,
g € Q[u] be of degree m and n, respectively, with g ir-
reducible, let ¥ be the field extension of Q obtained by
adjoining to it the roots of g, and suppose that g splits p
(that is, p factors into linear factors over ¥). Let & be an
extension of Q. Consider the algebras ®[u]/< p(u)) and
®[u]/{q(u)y. These are isomorphic to the matrix alge-
bras « and 3, generated by the companion matrices C, and
C, of p and ¢, respectively, with coefficients from ¢. The
companion matrix of a polynomial p(u) = gy + aju +
- +a,_u™" ' 4+ u™is the m X m matrix

000 —a
100 —a

G=| 010 —q (52)
001 —a,,

Also define the matrix algebra $(Q) to be the one gener-
ated by C, with rational coefficients. 5(Q) is a field iso-
morphic to ¥ and is a subalgebra of 3.

Denote the roots of p(u) by {u;, u,, -+ - , u,}, and let
1w, u? o--ut!
1w, ub -+ ufd!

v, = ... : (53)
1w, u - u"!

V, is called the Vandermonde matrix generated by the
roots of p (relative to the particularly chosen order). Be-
cause of our splitting assumption, the entries in ¥ and V™'

lie in ¥. The following identity is well known:

d

m—1 d
V<)y xjc;;> vl = ’ (54)
j=0 .
dp
where d, = LI~ ¢;ul.
Let p: ¥ — B(Q) be an isomorphism. p extends to a
ring homomorphism
p: M, (¥)

n(Q) (55)

by having p act on the entries of matrices in M,, indepen-
dently. We will call application of 5 the ‘‘blow-up’’ con-
struction; in the mathematics literature it is called an in-
duced representation. The following two identities will
play central roles in the sequel. First,

d,
m—1) dz
5(V) {(= x,.c;,> ® 1,,} Pt = :
J= .
d,
(56

where d, = E,’»" ! X p(u)’. This follows directly from (54)
with the observation that the blocks in the middle factor
of the left-hand side of the equation are all scalar multi-
ples of the identity. Second, for every 4 € M,,(¥) and B
€8,

Un @ B)pA) = 5 (AT, B B). (67

This identity follows from the fact that the image of 5 is
a block matrix with each block in 8, so that each block
commutes with B, and the fact that I, ® B is block di-
agonal.

Combining (56) and (57) we obtain our main block-
diagonalization result. For 4 = L; ¢;C}, € . and B € 8,

VA ® BV, = p(V)A R L), ® BV

(VYA R 1)p(V,) U, ® B)

a

. ® B

(58)

where @, = L; ¢;0(u)’.

In our block diagonalization of G, @ G, we took p(u)
=qu =u’ + 1, ¥ = Q@), ® = QYQ), B =
®[u] /<u® + 1), and A = B = G,. The particular p here
was denoted previously by p,.

2182 IEEE TRANSACTIONS ON SIGNAL PROCESSING. VOL. 40. NO. 9, SEPTEMBER 1992

Let us next consider G, ® G,. This time we take p(u) ~ with
=u? + 1and gqu)= u* + 1. Let w = ¢>™/%. We take
¥ =Qw = =Qul/u* + 1) (59) -y2 0 ¥(6)
& = Q(y(1)), 4 = G, and B = G,, and this time p is a -y6 0 =@ 0
. H, = (63)
representation of ¥ into the ring of 4 X 4 mairices with —v(6) 0 -2
entries in Q generated by the companion matrix
Yy 0 —©® 0
000 -1
100 O
Cposy = (60) Y4 0 v(4)
010 O i —@ 0 v4) 0 64)
001 0 ’ 0 —v@ 0 @
deﬁned by p(w) = C,sy,. We will denote this represen- —(4) 0 —y@ 0
tation by p,.
Again, starting with (54) and using the blow-up con-
struction, we obtain
def _
D, 4 = pa(V) (G, @ Gp)patVy) !
Y(6) pa(1) — ¥(2)24(i) p2(0)
= <] ® Gy
p2(0) Y(6)pa(1) + (2)pali)
[—v® - B v]
(M) =5 -1 yB)
-3 =y -y -0
D —v3) -1 -6
_ v =3 =) —vO) 61)
STC &) I TO) B 16
e (O I TV B 1C) N (O]
v G v yvO)
-3 -1 —v0O) —7(1)i
Remark 3.1: The reader may try to exterd p, to a
homomorphism of & ® ¥ into ¥, and then ex:end it to a 6 0) 0
homomorphism 5, acting on M,, (§ ® ¥). This would be —v(©) v
attractive, for then we would apply p4 to both sides of 0 —v(6) 0 v(2)
(48). But then, what would p,(v(2)) be? We would like it H; = n 0 - O (65)
to be v(2) I, but it may also be (1/2) p4(w + w ') which -2 v(6)
is a rational matrix. In other words, such an extension 0 —v(2) 0 —v(6)
would not be well defined. This is why we used the 4
expression ‘‘as if’’ in the paragraph after (49).
Finally, consider G, ® G,. This time take p(u) = q(u) H, = L. (66)

=u*+1,A =B = G,and again ¥ = Q(w) and & =
Q(v(1)). p is again p,, and the blow-up construction now
yields

def
D,y = pa(V)(Gy & G4)/34(V4)_1
H
H
=2 ’ (62)

H,

Remark 3.2: We have used the expression p, in two
different contexts. In (61) it was a homomorphism of
My(¥) into Mg(Q), and in (62) it was a homomorphism of
M,(Y) into M,,(Q), We do not want to introduce more
notation, and we anticipate no confusion. The notation
highlights the fact that each 4 expands each dimension
by a factor of 4.

Algorithmically, the above identities imply that com-
puting the product by G, ® G, can be done with 2 mul-
tiplications, the product by G, ® G, is rationally equiv-
alent to 2 products by G, and the product by G, ® G; is

FEIG AND WINOGRAD: FAST ALGORITHMS FOR THE DISCRETE COSINE TRANSFORM

rationally equivalent to a direct sum of 4 products by G,
and 4 products by y(4). In principle, therefore, the prod-
uct by G, ® G, can be done with 14 multiplications, and
the product by G, ® G, can be done with 4 X 3 + 4 =
16 multiplications. Similarly, because
G, ® G, = Ps(G, ® G)Py' (67)
where Pg is the perfect-shuffle permutation, the product
by G, ® G, is algorithmically equivalent to that by G,
® G,. Hence, the 2-D DCT on 8 X 8 points can be done
with 86 multiplications. In [10] it is shown that this is the
minimal number of multiplications necessary to compute
the 8 X 8-point DCT. However, in practice, products by
G, will be computed with 8 multiplications, following the
factorization of (29), hence the total number of multipli-
cations in a very practical implementation of the 8 X
8-point DCT will be 94.
From (50), (61), and (62) we obtain

(G, ® Gy = 25,(V) V(3D)Bx(Vs) (68)
(G, ® Gy) = 2p4(Va) ") (3D2.5)pa(V2) (69)
Gy ® Gp) = 4py(V) NVGD4BalVe). (70)

The fractional factors in front of the matrices D; , do not
affect the computational complexity of the algorithm, as
they can be incorporated into the constants. The factors
in front of the blown-up Vandermonde-inverse matrices

10 1

v, = 00 1

01 0

00 0
1000 1
0100 0
0010 1
00 0 0

are there so that their computations will involve only ad-
ditions.

Algorithms for computing the products by the blown-
up Vandermonde matrices and their inverses are based on
their well-known factorizations; these are the same fac-
torizations that lead to FFT algorithms. Namely. for ex-

ample,
1 1\/1 0 .
1 -1/ \o i 7n
m(i))
—pa(i)

1 1 0
pa()> <Pz() 0(0) > 72)
—02(1)/) \p2(0) —py(i)

so that

ey
0,(Vy) = (Pz
pa(1)

_ <p2(1>
pa(l)

2183

Observe that again we used the fact that the ‘‘blow up”’
operation is a ring homomorphism. Thus, one can multi-
ply a 4-point vector by p,(V,) by first multiplying two
2-point vectors by p,(1) and p,(i), respectively, using only
permutations and sign changes, and then multiplying by
the matrix

1 1
<Pz() o()) 73)
A1) —pa(D)
using 4 additions. Similarly,
-1
pa(1) pad)
25,(Vo)" ! =2
s <p2(1> _Pz(i)>
_ <Pz(1) Pz(o)> <p2(1) p2(1)>_ -,
02(0) —p() pa(1) —px(1)

Thus, multiplying a 4-point vector by 25,(V,) ™' can be
done by first multiplying by the matrix

<p2(1> p2(1)>
(1) —pa1)

using 4 additions, and then multiplying two 2-point vec-
tors by p,(1) and —p,(i), respectively, using only per-
mutations and sign changes. Similarly, multiplication of

an 8-vector by either p,(V,) or 4p4(V,) " can be done with
8 additions. And finally, the factorization

(75)

11
1 -1
1 0 100 O
0 1 0OwoO 0

(76)
-1 0 00 w?o
0 -1 000 w

yields an analogous blow-up identity from which we can
construct an algorithm for multiplying a 16-point vector
by p4(Vy) or 4p,(V,) ! each with 32 additions and some
permutations and sign-changes. Altogether, the algorithm
just described for the 8 X 8-point DCT will require 94
multiplications and 454 additions. In Table I we tabulate
the number of arithmetic operations our algorithm uses in
each stage. Column 1 gives the number of occurrences of
each ‘‘subproblem’’ indicated in column 2. Columns 3,
4, and 5 give, respectively, the number of multiplica-
tions, additions, and bit shifts required to perform each
subproblem. Columns 5, 6, and 7 give these numbers
times the entries in column 1. The next to the last row in
the table gives the number of preadditions. The last row
gives the total arithmetic count.

Remark 3.3: In [7] another algorithm is given for the 8
X 8-point DCT which uses 96 multiplications and 484

2184 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 40, NO. 9, SEPTEMBER 1992

TABLE |
COUNT OF ARITHMETIC OPERATIONS FOR DCT ON 8 X 8 POINTS
No. Times Operator Mults Adds Shifts Total Mults Total Adds Total Shifts
4 G, ® G, 1 0 1 0 0 4
4 2 G, 3 3 0 12 12 0
4 V26, 8 12 0 32 48 0
1 G, ® G, 2 10 2 2 10 2
2 G, ® G, 16 40 0 32 80 0
1 G, ® G, 16 80 0 16 80 0
Preadditions 224
Totals 94 454 6
additions. The definition of the DCT there does not have and
the DC component normalized so that the operator there R.. = B.B.B (80)
is not orthogonal; with that modification, the algorithm 8.2 15253
there is easily modified to one with 94 multiplications, ~ with B; and Bj as defined in (19) and
ax_ld is similar. i.n spirit to our algorithm. We do require a — 110 0 00 0 07
bit fewer additions.
-110 0 00 OO
IV. THE ScaLep DCT
In most applications, the DCT is followed by scaling 000 L 00 00
and quantization. The most popular application is image . 001 -1 00 00
data compression, where image blocks (matrices of pixel B = (81)
values) (p; ;) are subjected to a DCT yielding [p;), then 00 0 00 -10
scaled by predetermined constants s; ; yielding (p;;/s; ;) 000 O -10 01
which are then either rounded or truncated to the nearest 0
integer and then entropy coded, usually with Huffman or 000 0 10 -1
some arithmetic coding scheme. Because of the scaling, | 000 0 01 0 1]

we can instead of computing the DCT itself, compute
rather a scaled DCT. Consider then the following fac-
torization, which follows from (16), (29). and (30):

Cy = PyDgRy \MgRy 2 amn
where Py is as given in (17), Dg is the 8 X 3 diagonal
matrix whose diagonal elements are, in sequence from top
left to bottom right, 1/2 times 2v(0), v(4), (6), v(2),
¥(5), (1), ¥(3), ¥(7),

10 00 O 0O 00
01 00 O 0 00O
00 11 0 0 00
00 -11 0 0 00
Rei=190 00 1 1 -10 (78)
00 00 -1 1 01
00 00 -1 -1 =10
00 00 1 -1 0 1]
- —
1
1
M, = v4)
1
v(4)
¥(©) ~(2)
L —y(2) (6) |

(79)

Equation (77) suggests that we can compute the scaled
DCT on 8 points by first computing the product by
R | MgRg , and then incorporating the factors PgDjg into
the scaling. This is because the Py is just a permutation,
and Dy is diagonal, so that its action is simply pointwise
multiplication. Thus we can compute the scaled-DCT on
8 points with 5 multiplications and 28 additions [2].
Similarly, because of the identity

(PsDgRs | MgRg ;) @ (PyDgRs | MgRy)
= ((PsDg) ® (P3Dy))((Rs 1 MR 2) & (Rg 1M3Rs)
(82)

we see that we can compute the 2-dimensional scaled DCT
on 8 X 8 points by first computing a product by

(Rs,1MsRs 2) & (Rg MgRs 5) (83)
and then incorporating the product by
(PsDg) ® (PgDy) (84)
into the scaling. This again is so because
(PyDg) ® (PyDg) = (Py @ Pg)(Dg @ Dg) (85)

is a product of a diagonal matrix followed by a signed-
permutation matrix. The actual scaled-DCT computation
can be done following the formula obtained by rewriting
expression (83):

(Rg.) @ Ry) (My @ My)(Rg 2 ® Rg).

The preadditions and postadditions (products by (Ry ®
R 1) and (Rg , ® Ry ,)) are done in row-column fashion

(86)

FEIG AND WINOGRAD: FAST ALGORITHMS FOR THE DISCRETE COSINE TRANSFORM 2185

TABLE 11
COUNT OF ARITHMETIC OPERATIONS FOR SCALED-DCT ON 8 X 8 POINTS
No. Times Operator Mults Adds Shifts Total Mults Total Adds Total Shifts
16 1 0 0 0 0 0 0
16 G, 1 0 0 16 0 0
8 G, 3 3 0 24 24 0
4 V26, 3 3 0 12 12 0
4 G, ® G, 0 0 1 0 0 4
1 G, ® G, 2 10 2 2 10 2
Preadditions 288
Postadditions 128
Totals 54 462 6

with 128 and 288 additions, respectively. The core of the
8 X 8 scaled DCT is the computation of the product by
Mg ® Mg, which will not be done in row-column fashion.
Rather, the first, second, third, and fifth columns of the 8
X 8 data matrix will each be multiplied by M. Each of
these will involve 2 multiplications by v(4) plus the prod-
uct by the G,, which can be done with 3 multiplications
and 3 additions. The fourth and sixth columns will be
multiplied by v(4) M. Each of these can be done with 4
multiplications by y(4), 2 multiplications by 2, plus the
product the y(4) G,, which can be done with 3 multipli-
cations and 3 additions. The seventh and eighth columns
will be handled simultaneously to account for the product
by G, ® M. A 16-dimensional column vector 7 is formed
by interleaving the entries of these two columns. The first,
second, third, and fifth pairs of entries are each multiplied
by G,, while the fourth and sixth pairs are multiplied by
v(4) G,. Each of these takes 3 multiplications and three
additions. Finally, the seventh and eighth pairs of entries
are multiplied simultaneously by G, ® G,, as discussed
in the last paragraph of Section II, with 2 multiplications
by y(4) and 10 additions. Altogether, the entire algorithm
calls for 54 multiplications and 462 additions, plus 6 mul-
tiplications by 1/2. Table II breaks down the arithmetic
count for this computation. In the Appendix we give
flowgraphs describing the algorithm.

V. INvErRsE DCT’s
Because Cy is orthogonal, C;' = C%, and so from (16)
we have

Ci' = B'KLP; (87)

and

Therefore, the product of a vector by Ci' can be com-
puted by first permuting the data (this can be incorporated
into the next stage), then computing the product by Kj,
and ending with the product by B’ (which involves addi-
tions only). Since G5 and G/ are again elements in the
regular representation of the polynomial quotient rings
modulo u? + 1 and u* + 1, respectively, computing their
products can be done using the methods discussed in Sec-
tion II.

Alternately, we can use the identities

1
Gy = ;Hi, G, Hi{,D;' (89
G}
and
=1 D)0)
T 2\o 1 G/)\1 1 +(2)
(90)

to obtain algorithms for the products by G} and G5.
A second approach to computing the inverse DCT is
via the more direct sequence of (16),

Cc;! =B k;IPS! (91)

and

Ki'=1®G;'® G;' @ G, 92)
Here too G5 ' and G; ' are elements in the regular repre-
sentation of polynomial quotient rings modulo x> + 1 and
u* + 1, respectively, so computing their products effi-
ciently is understood. And here too one can alternately
invoke the identities

1
Gi;'=2H;} G;! H;\D, (93)
G;'
and
1 0\ /1 1 -1 (6)
(0 e (7)
(94)
For the 2-dimensional case,
(C® Cy ' =C;' ® ¢4
= (B' ® B")(K;s ® K3)(Py ® Pg). (95)

The algorithmic implications of the above formula are
straightforward; we will only comment on the core of the
computation, the product by (K3 ® K§). This involves

2186 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 40, NO. 9, SEPTEMBER 1992

computing products by of vectors by matrices of the form
(G ® G) = (G ® G) (96)

so we can use the identities obtained from (68)-(70)

(G5 ® Gb) = bV 3D2) 26,V (97)
(G, ® Gy = pu(V) (D2,) 2Bs(V)*1 (98)
(Gs ® Gy) = p(Va)(3D4.0) 4ps(Va)®) (99)

where * denotes the inverse transpose. Alternately, we
can use the identity

Ci'®Ci' =B ®BHK;:' ® KgH(Py' B Py))

(100)
and again use (68)-(70) to obtain simplifications for the
expressions for (G ' ® G;').

Similar algorithmic designs can be made for the scaled
DCT. For example, from (77) we obtain

Cs' = Ry MyRy DyPy (101)
from which we get the factorization
(G ® Cy)™!
= ((R§,2M§ ;3,1) ® (Rls,zMg %,)))
- (DgPg) ® (DgPy)). (102)

The factor (DgPs) ® (DgP§) can be incorporated into the
scaling. The first factor on the right-hand side of (102) is
equal to

(R, ® Ry o) My @ M3)(Ry, @ Ryy) (103)

and an algorithm based on this factorization can be de-
signed as was done in Section II. An explicit algorithm
using this idea is presented in detail in [9].

Alternately, we can use the factorization

Ci' = RgyMy 'Ry D' Py (104)

and obtain other algorithms. The details are omitted. We
just mention that some massaging may be usetful to move
some scalar factors from the inverse Ry | into the core of
the algorithm.

The two constructions will induce different quantiza-
tion matrices, and dynamic range considerations may
make one more attractive than the other. The former has
a slightly faster parallel implementation (its tree has depth
one less than that of the latter). These two issues are dis-
cussed in greater detail in [9].

VI. VARIATIONS ON A THEME

The factorization of G, given in (30) is only one of four
similar factorizations. The others are

-1
v(2) I 1
G =1
(7))
1 01
v(4) 11

(105)

G = ! <7(2) +7(6)

-1
7(2)—7(6)>
1 1\ (1 11
. (106)
L))

<v(2) ~ ¥(6)

and

-1
G, = 1
P Y(2) + 7(6)>

. .07
1 -1 2y(4) 10

Each of the four factorizations will lead to a different
factorization of the form in (77), which in turn, would
lead to a different (but very similar) algorithm using dif-
ferent scalings. Likewise, we can factor G, in ways sim-
ilar but different from (29):

1
Gy =3DidHi | @ H,, (108)
G,
where
¥(3)
(1)
D4,2_
¥(5)
(1)
11 0 -
o -11 -1 0
L B T T
-11 1 0
0 0 10
° 0 -1 1
“Tl1 o0 01
0 -1 -1 0
1
_ (@)
Gy =%D4,§H4,s
¥2) — ¥(©6) v(2) + 7(6)
—(y(2) + v(6)) ¥(2) — (©)
“He (109)

FEIG AND WINOGRAD: FAST ALGORITHMS FOR THE DISCRETE COSINE TRANSFORM 2187

where
¥(3) + ¥(5)
¥y + (1)
Dy; =
¥(5) — v(3)
¥(1) = (N
1 1 l 0
H -1 1 0 1
b 11 -1 0
-1 1 0 -1
1 010
H 0 0 01
Tl 100
0 011
and
1
N (4)
G, = 3D44H,y 5 H, g (110)
¥(2) — v(6) Y(2) + 7(6)
—y(2) — ¥(6)) Y(2) — v(6)
where
¥(3) — ¥(3)
¥(7) — (1)
D, =
¥(5) + v(3)
vy + ¥(7)
-11 0 -1
i 1 1 1 0
Tl 01
11 -1 0
1 0 -1 0
H 0 -1 0
v -1 0

These can all be verified by direct computation. Each of Then

these will lead to a new, yet similar, algorithm. The fol- - 1 0 0
lowing identities will enable one to reduce the number of) L o o
arithmetic operations in constructing these algorithms. Let - - - -~
()G, G V. =
2(V2) (G, 2)p2(V2) 0 0 V2 0
A Y(2) — v(6) (2 + 7(6) 0 0 0 2
G, = . (111
=v(2) — ¥(6)) ¥(2) — ¥(6) (112)

2188 IEEE TRANSACTIONS ON SIGNAL PROCESSING. VOL. 40, NO. 9, SEPTEMBER 1992

and
-2 N2 00
_ o A 2 —v2 0 0
(VG ® Gpa(Vy) ™ =
0 2 0
0 0 0 2

(113)

As an application of these different factorizations, one
may design a two-dimensional scaled DCT alzorithm on
8 x 8 points using the factorization of (77) as one factor
in the tensor product, and a second factorizaticn in which
the ‘‘core’’ is of the form

(114)

2y(4)

L G, |

The multiplications in the algorithm obtained via this fac-
torization arise from the tensor product My ® M. When
the details are worked out, the reader can verify that the
algorithm calls for 54 multiplications and 462 additions
plus 2 multiplications by 2 (the algorithm of section 4
used the same number of multiplications and additions
plus 6 multiplications by 1/2).

The various forms of factorizations yield different scal-
ing factors which, in practice, can be incorporated into
the scaling and quantization steps in such applications as
image data compression. Depending on the quantization
matrix for the particular application, some factorization
might be more appealing than another as far as the dy-
namic range of the induced quantization marrix is con-
cerned. See, for example, [9].

VII. THE GENERAL THEORY

Much of the material here is taken from [10], where the
multiplicative complexity of the DCT on arbi'rary inputs
of sizes which are powers of 2 has been determined. Com-
puting the one-dimensional DCT of size N involves mul-
tiplying an arbitrary N-dimensional real vector by the N
X N matrix Cy whose (j, k)th entry is

2mj(2k + 2‘)
4N

where ¢(0) = 1/vNand c(j) = V2/Nfor1 <j <N -

1. Computing the multidimensional DCT on an input ar-

ray of size N; X N, X -+ -+ X N involves multiplying an

arbitrary real vector of dimension N\N, - - - N, by the

matrix Cy, ® Cy, ® -+ & Cy,, where the symbol &
denotes the tensor (Kroenecker) product. The unnormal-

Tn(j2k + 1)) d;f c(j) cos <

ized DCT is a scaled version of the DCT, with a defining
matrix Ky, is similar to the one above except that the scal-
ing factors ¢(j) are omitted. For notational convenience,
we will use the unnormalized DCT in this section. Trans-
lating the results given here to the normalized (orthogo-
nal) DCT is straightforward.

We have the well-known trigonometric identity

Wy (@Ty(b) = Tyla + b) + Ty(a — b).

Taking a = jk and b = j in the above equation and rear-
ranging terms, we obtain

Ty(jtk + 1)) = 20y TN () = Tw(itk = 1)).

This equation shows that all I'y(jk) can be defined recur-
sively as polynomials in Iy (j). The following result, due
to Lehmer [15], is proved in [10]. We will use the nota-
tion (j, m) = 1 to denote that j and m are relatively prime.

Theorem 7.1: For (j, 4N) = 1, the degree of Q(T'y(j)),
as an extension of the rationals Q, is ¢(4N) /2, where
&(K) is the Euler function which counts the number of
integers between 1 and K — I which are relatively prime
to K.

Corollary 7.1: For (j, 4N) = 1, the elements {Ty(0),
Ty(j), -+, T([®(@4N)/2] — 1)} form a basis for Q
(T'y (1)) as a vector space over Q.

For the special case when N = 2", an integer power of
2, ¢(4N) = 2N, and so the degree of the extension of
Q(T'y(1)) over Q is N, and the following holds:

Corollary 7.2: For N = 2", the N elements

LU {Ty@ %@+ D)1 <k=n0=j<27
(117)

(115)

(116)

form a basis for Q (T'y (1)) as a vector space over Q.

Consider the ring Z,y of integers between 0 and 4N —
1 with operations addition and multiplication modulo 4N.
The odd integers in 24y form a multiplicative group Uyy
called the group of units of Zyy. It is well known that Uy
= Z, @ Zy. Let g € Uyy be a generator for the summand
which is isomorphic to Zy. Then (g"/?? = 1, so that
gN/2 = 2N + 1 € Uy. Hence

I‘N(g(N/2)+a) — PN(gN/Zga) - I‘N(2Ng" + ga)

-Tyv(g". (118)

The last equality follows because g is odd. Since, up to

sign, there are only N /2 distinct values I'y(j) with j odd,

the above equation states that the elements T'y(g’), j =

0,1, -+, (N/2) — 1, are all distinct in absolute value.

This argument can be extended to show the following:
Theorem 7.2: For N = 2", the N elements

LU Ty g1 =k=n0=<j<27h
(119)

form a basis for Q (T'y (1)) as a vector space over Q.
The basis just given is, except for signs, identical to
the basis given in Corollary 7.2. Hence, if we form the

FEIG AND WINOGRAD: FAST ALGORITHMS FOR THE DISCRETE COSINE TRANSFORM 2189

N/2-dimensional column vectors

Vna = @y TyG) -+ Ty = DY (120

and
Vva = (Cy(g" Ta(gh - Ty(g™27 1y a2b

then there exits a signed permutation matrix Py (each of
whose rows and columns have entries which are all 0 ex-
cept in one position, where it is either 1 or —1) such that

Vsz = PNVN,l' (122)
I‘N(go)
I‘N(g])

PosaysLn 2Py = I'v(g?

Iy(g™/27h —Tw(g" -

Recall the trigonometric identity

Ly(j2k + 1))

I'y(j@N — 2k — 1) if j is even 123
~I'y(j@N = 2k — 1)) if jis odd.
Let Py, be the permutation matrix acting on

N-dimensional vectors so that their odd indexed entries
appear first, in order, followed by their even indexed en-
tries, in order. Let Py , be the permutation matrix acting
on N-dimensional vectors by keeping the first half of their
entries fixed and reversing the order of the second half.
Let I, denote the N X N identity matrix, define

AT
F=a2\,

and let Fy = F ® Iy/,. The following follows directly
from (123).
Lemma 7.1:

. Kn/a
Py \RyPy o Fy = < L >
N/2

where Ly, is the (N/2) X (N/2) matrix whose (j, k)th
energy is Un((2f + 1) 2k + 1)).
Define the 2" X 2" matrix

(124)

Ly
L,
Ly

LGfl

We will use the direct-sum notation and write
L, =1PLDPLDL,D - D Ly-.

Arguing inductively as above, we obtain [10],
Lemma 7.2: For N = 2", there exists a signed permu-
tation matrix ®y and a rational matrix ®y such that

®yiy = L. (126)

For N = 2", using (118) and denoting by Py, 3 the
permutation matrix given in (122) acting on the vector

(125)

(Tn(g% Tw(gh --+ Tw(g™?7hy (27
we have
Tu(gh -+ Ty(g®» P
PN(gz) "‘FN(go)
FN(g3) _FN(gl)
—T'u(g'(N/2)—2)

Let Py4 be the permutation matrix acting on
N-dimensional vectors by reversing the order of their en-
tries. Let Cy be the companion matrix to the polynomial
u" + 1

0 —
1 0
=1 01 0 0
00---1 0

Then
(N/2)-1

Pov/2. 3Ly P3P/ = j;o Tn(g)) Chya

(128)
Define
2% —1
Gy= _ZO Ty %Q2j + 1) Ch (129)
=
and
Q,,=1@G1®G2@G4@"'@G2"-1. (130)

By the above discussion and Lemma 7.2, we have the
following result [10] which generalizes the factorization
of (16). :

Theorem 7.3: For N = 2", there exists a signed per-
mutation matrix ®y and a rational matrix &y such that

iy = ®yG, Ry (131)

From (115) we obtain
2y 22m + DIyp(@m + 1)(2n + 1)

Ly/(@m + 1)@2n) + Typ(@m + D20+ 1)

Iy(n@2m + 1)) + Typ((n + 12m + 1)).
(132)

2190 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 40, NO. 9, SEPTEMBER 1992

Define the N X N diagonal matrix
Lon(D)
T (3)
Dy =2 Ton(5)

TN = 1)

and the N X N matrix

1 0- 0
1 1- 0
Y, = 01- 0
00---10
00---11

Recalling the definition of Ly from Lemma 7. ., we have
by (132)

DyLy = ®iyYy. (133)
Define
K, =1Dk Pra @iy @D -+ D kpns (134)
Y, =11 DL DY, @ -+ D Vs (135)
and

ZD,,=1@D1®D2@D4@"'®D2"7I. (136)
Then from (133) we have
D,£, = X,Y, (137)

which together with Lemma 7.2 yields [10] the generali-
zation of (29), (30), and (77).
Theorem 7.4: For N = 2",

y=0."D'%,Y®x," (138)

where @, and &, are given as in Lemma 7.2.

The multidimensional case involves the tensor product
of the various contributing one dimensional caszs. We will
restrict our discussion here to the two-dimensional case;
the general case follows readily. Computation for the M
x N unnormalized DCT involves the product of the ma-
trix ky ® &y with an MN-point vector. Analogous to (31)
and (32), we have

kM ® '?N = (Pm ® Pn)(gm X gn)(mm ® (Rn) (139)
and
Sm ® gn =® (;j ® Gk~ (140)

The product by (®,, ® ®,) can be done in row-column
fashion, and (P,, ® P,) is a signed-permutation matrix.

Efficient algorithms can be constructed by exploiting the
algebraic structure of the tensor products (G,, ® G-

For every integer M define wy, = 22™/2M and denote
by Vy the Vandermonde matrices

1 wy Wi ceewp!
M,
1 W?w w,‘L Cwp
Vy =
— - M-1HM-1
1wty 20m DL @M DR =D

(141)

Recalling Cy, as the companion matrix to u” + 1, we
have that Vy,Cy V' is diagonal, with the (j, j)th entry
being Ty wii "% For M = 2", we have from (129)
that V,,Gy V' is also diagonal.

Without loss of generality, we assume M < N. Using
the blow-up construction [3] we define

M

Iy Cy Ccx cee MY
- I, ¢y Ch RN O
Vun = . .
I;v CgvM—l CIZV(2M—1) C;VzMA.I)(M—])
(142)
where Iy is the N X N identity matrix. Then
def —
Dyn = Vun(Gy X Gy) VI;I,IN
G],N 0 ct 0
0 G e 0
=1 . . (143)

0 0 0 Gyn

where the G; y are all polynomials in Cy with coefficients
in the field Q (T'y(1)). Furthermore, many of the G; y are
sparse and some have entries which are rationally related.
We have observed this for special cases in (62) through
(66). We have not yet worked out the general theory that
predicts these algebraic simplifications, but we can pre-
dict them using the results of [4]. In all the examples we
have worked out, the final direct sum systems we obtain
are identical to those is [4], even though the constructions
are totally different. Tying the two together is still an open
issue.

For the special cases M = 2" and N = 2" with M < N
we expect to essentially reduce the computation to M dis-
tinct one-dimensional DCT’s on N points. By essentially
we mean that there is an overhead involving additions
only. For the general multidimensional case on M; = 2"
points along each dimension, with M, <= M, < * -~ =
M, we reduce the task to essentially a direct sum system
of M|\M, -+ M,;_, one-dimensional DCT’s on M,
points.

FEIG AND WINOGRAD: FAST ALGORITHMS FOR THE DISCRETE COSINE TRANSFORM

=
—-
-

M3

fi

2191

=
N~

Fig. 1. Overall block diagram for scaled-DCT on 8 X 8 points.

VIII. CONCLUSION

We have presented efficient practical algorithms for
various two-dimensional DCT based computations on 8
x 8 points. These include forward and inverse DCT’s and
scaled-DCT’s. The algorithms are highly pipelined and
parallelizable. In our own compression/decompression
routines at IBM, we have chosen the scaled DCT versions
on 8 X 8 points. These use 54 multiplications and 462
additions each, and also have the added property that no
computation path uses more than one multiplication. Thus
we are able to do all our computations with 16-b fixed-
point arithmetic and still obtain sufficient accuracy (our
input is 8-b maximum).

Our algorithms were based on various algebraic prop-
erties of the DCT matrix and theorems regarding the
structure of tensor products of matrices which can be
viewed as elements in the regular representation of certain
fields defined by polynomial multiplication modulo irre-
ducible polynomials. Finally, we have shown that our
constructions may be extended to yield algorithms for
DCT’s and scaled-DCT’s of arbitrary dimensions on in-
put sizes which are powers of 2.

APPENDIX

We give here flowcharts for implementing the scaled-
DCT discussed in Section IV. Fig. 1 gives the overall
picture. The data are entries from an 8 X 8 matrix. Each
row is passed through an addition stage Gt1 which is de-
scribed explicitly in Fig. 2. Arrows indicate subtractions.
The outputs are then permuted (transposed) in ®, and next
the columns are passed through ®1 first three stages of
the circuit perform the ‘‘preadditions’” and as can be seen,
these are done in ‘‘row-column’’ fashion.

x0

x1

x2

x3

x7

x6

x5

x4

Fig. 2. Circuit element ®1 for preadditions stage.

Next, the various resulting vectors are passed through
the multipliers 9N 1, 92, and M 3. These circuits are de-
tailed in Figs. 3, 4, and 5, respectively. The bottoms of
Figs. 3 and 4 are circuits for complex multiplication (in
this case, in fact, rotators for computing the products by
G, and («/5 /2) G,, respectively. The constants in the mul-
tipliers are gy = V2/2, a; = v(6) — ¥(2), a, = —¥(2),
a3 = v(6) + v, by = V2 a,/2, by = N2 a,/2, bs =
V2 a3 /2. Fig. 5 for multiplier 91 3 highlights the simul-
taneous processing of two columns by first interleaving
them, passing four pairs of values through the rotator Q1
which multiplies by G,, two pairs through the rotator Q2
which multiplies by (v2/2)G,, and the remaining four

2192 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 40, NO. 9, SEPTEMBER 1992

4 v6,0
\ o /
R V70— | T —
ve1
o >~a e
* o v62
— \ Q1 /\
| v7,2
v§3
* \ Q2 /\
0 v73 _,VT/"
L2
v1IA | Qi /\
v6,5

v1s o — Q2 T

Fig. 3. Circuit for 91 of multiplication stage. Ve />< Q3 >k

\

L Fig. 6. Circuit for Q3 of multiplication stage.

== X

Fig. 4. Circuit for M 2 of multiplication stag:.

values are passed through a circuit 3 which is given in
Fig. 6. The constant in Fig. 6 is ¢, = V2/4.
The output of the multiplier stage are then processed
with “postadditions’” which are also done in 1ow-column
fashion. This is represented in Fig. 1 by the two columns
of circuits ® 2 with the permutation @' separating them.
The circuit for ®2 is given in Fig. 7. The final stage in
Fig. 1 is the quantization step Q. Fig. 7. Circuit element ® 2 for postadditions stage.

FEIG AND WINOGRAD: FAST ALGORITHMS FOR THE DISCRETE COSINE TRANSFORM 2193

REFERENCES

[1] N. Ahmed, T. Natarajan, and K. R. Rao, ‘‘Discrete cosine trans-
form,”’ IEEE Trans. Comput., vol. C-23, pp. 90-93, Jan. 1974.

[2] Y. Arai, T. Agui, and M. Nakajima, ‘‘A fast DCT-SQ scheme for
images,”” Trans. IEICE, vol. E-71, no. 11, Nov. 1988.

[3] L. Auslander, E. Feig, and S. Winograd, ‘‘Abelian semi-simple al-
gebras and algorithms for the discrete Fourier transform,’” Adv. Appl.
Math., vol. 5, pp. 31-55, 1984.

[4] L. Auslander and S. Winograd, ‘‘The multiplicative complexity of
certain semilinear systems defined by polynomials,”” Adv. Appl.
Math., vol. 1, pp. 257-299, 1980.

[5] W. H. Chen, C. H. Smith, and S. C. Fralick, ‘‘A fast computational
algorithm for the discrete cosine transform,”’ IEEE Trans. Commun.,
vol. COM-25, pp. 1004-1009, Sept. 1977.

[6] P. Duhamel, ‘‘New 2" DCT algorithms suitable for VLSI implemen-
tation,”” in Proc. ICASSP-87 (Dallas, TX), Apr. 1987, pp. 1805-
1808.

[7] P. Duhamel and C. Guillemot, ‘‘Polynomial transform computation
of the 2-D DCT,”’ in Proc. ICASSP-90 (Albuquerque. NM), 1990,
pp. 1515-1518.

[8] Y. Eutani and K. Ohzeki, ‘“A new fast algorithm for DCT,”’ pre-
sented at the Fourth DSP Workshop, Mohonk Mountain House, New
Palz, NY, Sept. 16-19, 1990.

[9] E. Feig, ‘‘A fast scaled DCT algorithm,’” Proc. SPIE Int. Soc. Opt.
Eng., vol. 1244, pp. 2-13, 1990.

[10] E. Feig and S. Winograd, ‘‘On the multiplicative complexity of dis-
crete cosine transforms,’” IEEE Trans. Inform. Theory, vol. 38, no.
4, pp. 1387-1391, July 1992.

[11] M. T. Heiderman, Multiplicative Complexity, Convolution, and DFT.
Springer-Verlag, 1988, pp. 116-117.

[12] H. S. Hou, ‘A fast recursive algorithm for computing the discrete
cosine transform,”’ IEEE Trans. Acoust., Speech, Signal Processing,
vol. ASSP-35, no. 10, pp. 1455-1461, 1987.

[13] S. Lang, Algebra. Reading, MA: Addison-Wesley, 1965.

f14] B. G. Lee, ‘‘A new algorithm to compute the discrete cosine trans-
form,”” IEEE Trans. Acoust., Speech, Signal Processing, vol.
ASSP-32, no. 6, pp. 1243-1245, Dec. 1984,

[15] D. H. Lehmer, Amer. Math. Monthly, vol. 40, pp. 165-166, 1933;
also in I. Niven, Irrational Numbers. New York: Wiley, 1967, pp.
37-38.

[16] C. Loeffler, A. Ligtenberg, and G. S. Moschytz, ‘‘Algorithm-archi-
tecture mapping for custom DCT chips,’” in Proc. Int. Symp. Circuits
Syst. (Helsinki, Finland), June 1988, pp. 1953-1956.

[17] J. Makhoul, ‘*A fast cosine transform in one and two dimensions,”
IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-28, no.
1, pp. 27-34, Feb. 1980.

[18] M. J. Narasimha and A. M. Peterson, ‘‘On the computation of the
discrete cosine transform,’’ IEEE Trans. Commun., vol. COM-26,
no. 6, pp. 934-936, June 1978

[19] K. R. Rao and P. Yip, Discrete Cosine Transform-Algorithms, Ad-
vantages, Applications. New York: Academic, 1990.

{20] K. Shanmugam, ‘‘Comments on discrete cosine transtorms,’’ J/EEE
Trans. Comput., vol. C-24, p. 759, July 1975.

[21] N. Suehiro and M. Hatori, ‘‘Fast algorithms for the DFT and other
sinusoidal transforms,’” IEEE Trans. Acoust., Speech, Signal Pro-
cessing, vol. ASSP-34, pp. 642-644, 1986.

[22} B. D. Tseng and W. C. Miller, ‘‘On computing the discrete cosine
transform,”” IEEE Trans. Comput., vol. C-27, pp. 966-968, Oct.
1978.

[23] M. Vetterli and H. J. Nussbaumer, *‘Simple FFT and DCT algo-
rithms with reduced number of operations,’’” Signal Processing, Aug.
1984.

[24] M. Vetterli, ‘*Fast 2-D discrete cosine transform,’” in Proc. ICASSP-
85 (Tampa, FL), Mar. 1985.

[25] S. Winograd, *‘On computing the discrete Fourier transform,”” Math.
Comput., vol. 32, pp. 175-199, 1978.

[26] S. Winograd, **On the multiplicative complexity of the discrete Fou-
rier transform,’” Adv. Math., vol. 32, no. 2, pp. 83-117, 1979.

[27] S. Winograd, Arithmetic Complexity of Computations, CBMS-NSF
Regional Conference Series in Applied Math., 1980.

Ephraim Feig (A’'84-SM’89-F’92) received the
B.S. degree in mathematics from the City College
of New York in 1971 and the Ph.D. degree in
mathematics from the Graduate Center of the City
University of New York in 1981.

He is currently Manager of Signal Processing
and Coding in the Mathematical Sciences Depart-
ment at IBM Research, Yorktown Heights, NY.
His interests are in image data compression and
processing, coding and modulation, radar, mag-
netic resonance imaging, coding for error control,
fast algorithms, and complexity theory. He has published extensively in all
these fields and has won eight IBM Invention Achievement Awards for
related patents activity. He has taught at Columbia University, CCNY,
Richmond College, the College of Staten Island, New York Polytechnic,
Bronx Community College, and IBM.

Shmuel Winograd (S°59-M’62-SM’73-F’74)
received the Ph.D. degree in mathematics from
New York University in 1968.

He is currently an IBM Fellow and Director of
the Mathematical Sciences Department at IBM,
T. J. Watson Research Center, Yorktown Heights,
NY. His research interests are in complexity of
computation with particular emphasis on signal
processing and linear algebra.

Dr. Winograd received, in 1974, the IEEE CS
McDowell Award; in 1978 he was elected to the
National Academy of Sciences; and in 1983 he was ¢lected to the American
Academy of Arts and Sciences. In 1987 he was Docteur Honoris Causa,
Institut National Polytechnic de Grenoble, and in 1989 he was elected to
the American Philosophical Society.

